861
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Quantifying brown carbon light absorption in real-world biofuel combustion emissions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 502-516 | Received 20 Sep 2021, Accepted 19 Feb 2022, Published online: 07 Apr 2022

References

  • Adler, G., N. L. Wagner, K. D. Lamb, K. M. Manfred, J. P. Schwarz, A. Franchin, A. M. Middlebrook, R. A. Washenfelder, C. C. Womack, R. J. Yokelson, et al. 2019. Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon. Aerosol Sci. Technol. 53 (9):976–89. doi: 10.1080/02786826.2019.1617832.
  • Andreae, M. O., and A. Gelencsér. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6 (10):3131–48. doi: 10.5194/acp-6-3131-2006.
  • Bertschi, I., R. J. Yokelson, D. E. Ward, R. E. Babbitt, R. A. Susott, J. G. Goode, and W. M. Hao. 2003. Trace gas and particle emissions from fires in large diameter and belowground biomass fuels. J. Geophys. Res. 108 (D13):8472. doi: 10.1029/2002JD002100.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol. Sci. Technol. 40 (1):27–67. doi: 10.1080/02786820500421521.
  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 109 (D14):D14203. doi: 10.1029/2003JD003697.
  • Bond, T. C., G. Habib, and R. W. Bergstrom. 2006. Limitations in the enhancement of visible light absorption due to mixing state. J. Geophys. Res. 111:D20211. doi: 10.1029/2006JD007315.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi: 10.1002/jgrd.50171.
  • Browne, E. C., X. Zhang, J. P. Franklin, K. J. Ridley, T. W. Kirchstetter, K. R. Wilson, C. D. Cappa, and J. H. Kroll. 2019. Effect of heterogeneous oxidative aging on light absorption by biomass burning organic aerosol. Aerosol. Sci. Technol. 53 (6):663–74. doi: 10.1080/02786826.2019.1599321.
  • Cavalli, F., M. Viana, K. E. Yttri, J. Genberg, and J.-P. Putaud. 2010. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 3 (1):79–89. doi: 10.5194/amt-3-79-2010.
  • Chafe, Z. A., M. Brauer, Z. Klimont, R. Van Dingenen, S. Mehta, S. Rao, K. Riahi, F. Dentener, and K. R. Smith. 2014. Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease. Environ. Health Perspect. 122 (12). doi: 10.1289/ehp.1206340.
  • Chakrabarty, R. K., M. Gyawali, R. L. N. Yatavelli, A. Pandey, A. C. Watts, J. Knue, L.-W. A. Chen, R. R. Pattison, A. Tsibart, V. Samburova, et al. 2016. Brown carbon aerosols from burning of boreal peatlands: Microphysical properties, emission factors, and implications for direct radiative forcing. Atmos. Chem. Phys. 16 (5):3033–40. doi: 10.5194/acp-16-3033-2016.
  • Champion, W. M., and A. P. Grieshop. 2019. Pellet-fed gasifier stoves approach gas-stove like performance during in-home use in Rwanda. Environ. Sci. Technol. 53 (11):6570–9. doi: 10.1021/acs.est.9b00009.
  • Chen, Y., and T. C. Bond. 2010. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 10 (4):1773–87. doi: 10.5194/acp-10-1773-2010.
  • Cheng, Y., K. He, Z. Du, G. Engling, J. Liu, Y. Ma, M. Zheng, and R. J. Weber. 2016. The characteristics of brown carbon aerosol during winter in Beijing. Atmos. Environ. 127:355–64. doi: 10.1016/j.atmosenv.2015.12.035.
  • Cheng, Z., K. Atwi, O. E. Hajj, I. Ijeli, D. A. Fischer, G. Smith, and R. Saleh. 2020. Discrepancies between brown carbon light-absorption properties retrieved from online and offline measurements. Aerosol. Sci. Technol. 55 (1):92–103. doi: 10.1080/02786826.2020.1820940.
  • Corbin, J. C., H. Czech, D. Massabò, d. M. F. Buatier, G. Jakobi, F. Liu, P. Lobo, C. Mennucci, A. A. Mensah, J. Orasche, et al. 2019. Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. NPJ Clim. Atmos. Sci. Lond. 2:12. doi: 10.1038/s41612-019-0069-5.
  • Eilenberg, S. R., K. R. Bilsback, M. Johnson, J. K. Kodros, E. M. Lipsky, A. Naluwagga, K. M. Fedak, M. Benka-Coker, B. Reynolds, J. Peel, et al. 2018. Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India. Atmos. Environ. 190:116–25. doi: 10.1016/j.atmosenv.2018.06.041.
  • Fleming, L. T., P. Lin, A. Laskin, J. Laskin, R. Weltman, R. D. Edwards, N. K. Arora, A. Yadav, S. Meinardi, D. R. Blake, et al. 2018. Molecular composition of particulate matter emissions from dung and brushwood burning household cookstoves in Haryana, India. Atmos. Chem. Phys. 18 (4):2461–80. doi: 10.5194/acp-18-2461-2018.
  • Gelaro, R., W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, et al. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30 (14):5419–54. doi: 10.1175/JCLI-D-16-0758.1.
  • Grieshop, A. P., G. Jain, K. Sethuraman, and J. D. Marshall. 2017. Emission factors of health- and climate-relevant pollutants measured in home during a carbon-finance-approved cookstove intervention in rural India. GeoHealth 1 (5):222–36. doi: 10.1002/2017GH000066.
  • Islam, M. M., R. Wathore, H. Zerriffi, J. D. Marshall, R. Bailis, and A. P. Grieshop. 2021. In-use emissions from biomass and LPG stoves measured during a large, multi-year cookstove intervention study in rural India. Sci. Total Environ. 758:143698. doi: 10.1016/j.scitotenv.2020.143698.
  • Jetter, J. J., and P. Kariher. 2009. Solid-fuel household cook stoves: Characterization of performance and emissions. Biomass Bioenergy 33 (2):294–305. doi: 10.1016/j.biombioe.2008.05.014.
  • Jetter, J., Y. Zhao, K. R. Smith, B. Khan, T. Yelverton, P. DeCarlo, and M. D. Hays. 2012. Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ. Sci. Technol. 46 (19):10827–34. doi: 10.1021/es301693f.
  • Johnson, M. A., C. R. Garland, K. Jagoe, R. Edwards, J. Ndemere, C. Weyant, A. Patel, J. Kithinji, E. Wasirwa, T. Nguyen, et al. 2019. In-home emissions performance of cookstoves in Asia and Africa. Atmosphere 10 (5):290. doi: 10.3390/atmos10050290.
  • Johnson, M., R. Edwards, C. Alatorre Frenk, and O. Masera. 2008. In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos. Environ. 42 (6):1206–22. doi: 10.1016/j.atmosenv.2007.10.034.
  • Keita, S., C. Liousse, V. Yoboué, P. Dominutti, B. Guinot, E.-M. Assamoi, A. Borbon, S. L. Haslett, L. Bouvier, A. Colomb, et al. 2018. Particle and VOC emission factor measurements for anthropogenic sources in West Africa. Atmos. Chem. Phys. 18 (10):7691–708. doi: 10.5194/acp-18-7691-2018.
  • Kirchstetter, T. W., and T. L. Thatcher. 2012. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation. Atmos. Chem. Phys. 12 (14):6067–72. doi: 10.5194/acp-12-6067-2012.
  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109 (D21). doi: 10.1029/2004JD004999.
  • Kumar, N. K., J. C. Corbin, E. A. Bruns, D. Massabó, J. G. Slowik, L. Drinovec, G. Močnik, P. Prati, A. Vlachou, U. Baltensperger, et al. 2018. Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Atmos. Chem. Phys. 18 (24):17843–61. doi: 10.5194/acp-18-17843-2018.
  • Lacaux, J.-P., D. Brocard, C. Lacaux, R. Delmas, A. Brou, V. Yoboué, and M. Koffi. 1994. Traditional charcoal making: An important source of atmospheric pollution in the African Tropics. Atmos. Res. 35 (1):71–6. doi: 10.1016/0169-8095(94)90073-6.
  • Lack, D. A., and C. D. Cappa. 2010. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos. Chem. Phys. 10 (9):4207–20. doi: 10.5194/acp-10-4207-2010.
  • Liu, J., M. Bergin, H. Guo, L. King, N. Kotra, E. Edgerton, and R. J. Weber. 2013. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. Atmos. Chem. Phys. 13 (24):12389–404. doi: 10.5194/acp-13-12389-2013.
  • Lu, Z., D. G. Streets, E. Winijkul, F. Yan, Y. Chen, T. C. Bond, Y. Feng, M. K. Dubey, S. Liu, J. P. Pinto, et al. 2015. Light absorption properties and radiative effects of primary organic aerosol emissions. Environ. Sci. Technol. 49 (8):4868–77. doi: 10.1021/acs.est.5b00211.
  • Ma, J., X. Li, P. Gu, T. R. Dallmann, A. A. Presto, and N. M. Donahue. 2016. Estimating ambient particulate organic carbon concentrations and partitioning using thermal optical measurements and the volatility basis set. Aerosol. Sci. Technol. 50 (6):638–51. doi: 10.1080/02786826.2016.1158778.
  • McClure, C. D., C. Y. Lim, D. H. Hagan, J. H. Kroll, and C. D. Cappa. 2020. Biomass-burning-derived particles from a wide variety of fuels – Part 1: Properties of primary particles. Atmos. Chem. Phys. 20 (3):1531–47. doi: 10.5194/acp-20-1531-2020.
  • McDuffie, E. E., S. J. Smith, P. O'Rourke, K. Tibrewal, C. Venkataraman, E. A. Marais, B. Zheng, M. Crippa, M. Brauer, and R. V. Martin. 2020. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): An application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 12 (4):3413–42. doi: 10.5194/essd-12-3413-2020.
  • McMeeking, G. R., E. Fortner, T. B. Onasch, J. W. Taylor, M. Flynn, H. Coe, and S. M. Kreidenweis. 2014. Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning. J. Geophys. Res. Atmos. 119 (21):12272–286. doi: 10.1002/2014JD021750.
  • Mitchell, E. J. S., Y. Ting, J. Allan, A. R. Lea-Langton, D. V. Spracklen, G. McFiggans, H. Coe, M. N. Routledge, A. Williams, and J. M. Jones. 2019. Pollutant emissions from improved cookstoves of the type used in sub-Saharan Africa. Combust. Sci. Technol. 192 (8):1582–602. doi: 10.1080/00102202.2019.1614922.
  • Pandey, A., A. Hsu, S. Tiwari, S. Pervez, and R. K. Chakrabarty. 2020. Light absorption by organic aerosol emissions rivals that of black carbon from residential biomass fuels in South Asia. Environ. Sci. Technol. Lett. 7 (4):266–72. doi: 10.1021/acs.estlett.0c00058.
  • Pandey, A., S. Patel, S. Pervez, S. Tiwari, G. Yadama, J. C. Chow, J. G. Watson, P. Biswas, and R. K. Chakrabarty. 2017. Aerosol emissions factors from traditional biomass cookstoves in India: Insights from field measurements. Atmos. Chem. Phys. 17 (22):13721–9. doi: 10.5194/acp-17-13721-2017.
  • Pennise, D. M., K. R. Smith, J. P. Kithinji, M. E. Rezende, T. J. Raad, J. Zhang, and C. Fan. 2001. Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil. J. Geophys. Res. 106 (D20):24143–55. doi: 10.1029/2000JD000041.
  • Pokhrel, R. P., E. R. Beamesderfer, N. L. Wagner, J. M. Langridge, D. A. Lack, T. Jayarathne, E. A. Stone, C. E. Stockwell, R. J. Yokelson, and S. M. Murphy. 2017. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmos. Chem. Phys. 17 (8):5063–78. doi: 10.5194/acp-17-5063-2017.
  • Pokhrel, R. P., N. L. Wagner, J. M. Langridge, D. A. Lack, T. Jayarathne, E. A. Stone, C. E. Stockwell, R. J. Yokelson, and S. M. Murphy. 2016. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC/OC for aerosol emissions from biomass burning. Atmos. Chem. Phys. 16 (15):9549–61. doi: 10.5194/acp-16-9549-2016.
  • Polidori, A., B. J. Turpin, C. I. Davidson, L. A. Rodenburg, and F. Maimone. 2008. Organic PM 2.5 : Fractionation by polarity, FTIR spectroscopy, and OM/OC ratio for the Pittsburgh aerosol. Aerosol. Sci. Technol. 42 (3):233–46. doi: 10.1080/02786820801958767.
  • Reece, S. M., A. Sinha, and A. P. Grieshop. 2017. Primary and photochemically aged aerosol emissions from biomass cookstoves: Chemical and physical characterization. Environ. Sci. Technol. 51 (16):9379–90. doi: 10.1021/acs.est.7b01881.
  • Roden, C. A., T. C. Bond, S. Conway, A. B. Osorto Pinel, N. MacCarty, and D. Still. 2009. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos. Environ. 43 (6):1170–81. doi: 10.1016/j.atmosenv.2008.05.041.
  • Roden, C. A., T. C. Bond, S. Conway, and A. B. O. Pinel. 2006. Emission factors and real-time optical properties of particles emitted from traditional wood burning cookstoves. Environ. Sci. Technol. 40 (21):6750–7. doi: 10.1021/es052080i.
  • Saleh, R. 2020. From measurements to models: Toward accurate representation of brown carbon in climate calculations. Curr. Pollut. Rep. 6:90–104. doi: 10.1007/s40726-020-00139-3.
  • Saleh, R., C. J. Hennigan, G. R. McMeeking, W. K. Chuang, E. S. Robinson, H. Coe, N. M. Donahue, and A. L. Robinson. 2013. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 13 (15):7683–93. doi: 10.5194/acp-13-7683-2013.
  • Saleh, R., E. S. Robinson, D. S. Tkacik, A. T. Ahern, S. Liu, A. C. Aiken, R. C. Sullivan, A. A. Presto, M. K. Dubey, R. J. Yokelson, et al. 2014. Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nature Geosci. 7 (9):647–50. doi: 10.1038/ngeo2220.
  • Saleh, R., M. Marks, J. Heo, P. J. Adams, N. M. Donahue, and A. L. Robinson. 2015. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. J. Geophys. Res. Atmos. 120 (19):10285–296. doi: 10.1002/2015JD023697.
  • Saleh, R., Z. Cheng, and K. Atwi. 2018. The Brown–black continuum of light-absorbing combustion aerosols. Environ. Sci. Technol. Lett. 5 (8):508–13. doi: 10.1021/acs.estlett.8b00305.
  • Sengupta, D., V. Samburova, C. Bhattarai, E. Kirillova, L. Mazzoleni, M. Iaukea-Lum, A. Watts, H. Moosmüller, and A. Khlystov. 2018. Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion. Atmos. Chem. Phys. 18 (15):10849–67. doi: 10.5194/acp-18-10849-2018.
  • Shen, G., Y. Chen, C. Xue, N. Lin, Y. Huang, H. Shen, Y. Wang, T. Li, Y. Zhang, S. Su, et al. 2015. Pollutant emissions from improved coal- and wood-fuelled cookstoves in rural households. Environ. Sci. Technol. 49 (11):6590–8. doi: 10.1021/es506343z.
  • Shetty, N. J., A. Pandey, S. Baker, W. M. Hao, and R. K. Chakrabarty. 2019. Measuring light absorption by freshly emitted organic aerosols: Optical artifacts in traditional solvent-extraction-based methods. Atmos. Chem. Phys. 19 (13):8817–30. doi: 10.5194/acp-19-8817-2019.
  • Stevens, R., and A. Dastoor. 2019. A review of the representation of aerosol mixing state in atmospheric models. Atmosphere 10 (4):168. doi: 10.3390/atmos10040168.
  • Sumlin, B. J., Y. W. Heinson, N. Shetty, A. Pandey, R. S. Pattison, S. Baker, W. M. Hao, and R. K. Chakrabarty. 2018. UV–Vis–IR spectral complex refractive indices and optical properties of brown carbon aerosol from biomass burning. J. Quant. Spectrosc. Radiat. Transf. 206:392–8. doi: 10.1016/j.jqsrt.2017.12.009.
  • Sun, H., L. Biedermann, and T. C. Bond. 2007. Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol. Geophys. Res. Lett. 34 (17):L17813. doi: 10.1029/2007GL029797.
  • Sun, J., G. Zhi, R. Hitzenberger, Y. Chen, C. Tian, Y. Zhang, Y. Feng, M. Cheng, Y. Zhang, J. Cai, F. Chen, Y. Qiu, et al. 2017. Emission factors and light absorption properties of brown carbon from household coal combustion in China. Atmos. Chem. Phys. 17 (7):4769–80. doi: 10.5194/acp-17-4769-2017.
  • Ting, Y., E. J. S. Mitchell, J. D. Allan, D. Liu, D. V. Spracklen, A. Williams, J. M. Jones, A. R. Lea-Langton, G. McFiggans, and H. Coe. 2018. Mixing state of carbonaceous aerosols of primary emissions from “improved” African cookstoves. Environ. Sci. Technol. 52 (17):10134–43. doi: 10.1021/acs.est.8b00456.
  • Wathore, R., K. Mortimer, and A. P. Grieshop. 2017. In-use emissions and estimated impacts of traditional, natural- and forced-draft cookstoves in rural Malawi. Environ. Sci. Technol. 51 (3):1929–38. doi: 10.1021/acs.est.6b05557.
  • Weyant, C. L., P. Chen, A. Vaidya, C. Li, Q. Zhang, R. Thompson, J. Ellis, Y. Chen, S. Kang, G. R. Shrestha, et al. 2019. Emission measurements from traditional biomass cookstoves in South Asia and Tibet. Environ. Sci. Technol. 53 (6):3306–14. doi: 10.1021/acs.est.8b05199.
  • Xie, M., G. Shen, A. L. Holder, M. D. Hays, and J. J. Jetter. 2018. Light absorption of organic carbon emitted from burning wood, charcoal, and kerosene in household cookstoves. Environ. Pollut. 240:60–7. doi: 10.1016/j.envpol.2018.04.085.
  • Xie, M., M. D. Hays, and A. L. Holder. 2017. Light-absorbing organic carbon from prescribed and laboratory biomass burning and gasoline vehicle emissions. Sci. Rep. 7 (1):1–9. doi: 10.1038/s41598-017-06981-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.