720
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Discrimination between individual dust and bioparticles using aerosol time-of-flight mass spectrometry

ORCID Icon, , , , , , ORCID Icon, & show all
Pages 592-608 | Received 19 Mar 2021, Accepted 01 Mar 2022, Published online: 26 Apr 2022

References

  • Andreae, M. O., and D. Rosenfeld. 2008. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth. Sci. Rev. 89 (1–2):13–41. doi:10.1016/j.earscirev.2008.03.001.
  • Angelino, S., D. T. Suess, and K. A. Prather. 2001. Formation of aerosol particles from reactions of secondary and tertiary alkylamines: Characterization by aerosol time-of-flight mass spectrometry. Environ. Sci. Technol. 35 (15):3130–8. doi:10.1021/es0015444.
  • Atkinson, J. D., B. J. Murray, M. T. Woodhouse, T. F. Whale, K. J. Baustian, K. S. Carslaw, S. Dobbie, D. O’Sullivan, and T. L. Malkin. 2013. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 500 (7463):490– . doi:10.1038/nature12384.
  • Cahill, J. F., K. Suski, J. H. Seinfeld, A. Zaveri, and A. Prather. 2012. The mixing state of carbonaceous aerosol particles in northern and southern California measured during CARES and CalNex 2010. Atmos. Chem. Phys. 12:10989–1002. doi:10.5194/acp-12-10989-2012.
  • Cahill, J., T. K. Darlington, C. Fitzgerald, N. G. Schoepp, J. Beld, M. D. Burkart, and K. A. Prather. 2015. Online analysis of single cyanobacteria and algae cells under nitrogen-limited conditions using aerosol time-of-flight mass spectrometry. Anal. Chem. 87 (16):8039–46. doi:10.1021/acs.analchem.5b02326.
  • Cahill, J. F., T. K. Darlington, X. Wang, J. Mayer, M. T. Spencer, J. C. Holecek, B. E. Reed, and K. A. Prather. 2014. Development of a high-pressure aerodynamic lens for focusing large particles (4–10 μm) into the aerosol time-of-flight mass spectrometer. Aerosol Sci. Technol. 48 (9):948–56. doi:10.1080/02786826.2014.947400.
  • Carson, P. G., M. V. Johnston, and A. S. Wexler. 1997. Real-time monitoring of the surface and total composition of aerosol particles. Aerosol Sci. Technol. 26 (4):291–300. doi:10.1080/02786829708965431.
  • Conen, F., C. E. Morris, J. Leifeld, M. V. Yakutin, and C. Alewell. 2011. Biological residues define the ice nucleation properties of soil dust. Atmos. Chem. Phys. 11 (18):9643–8. doi:10.5194/acp-11-9643-2011.
  • Creamean, J. M., C. Lee, T. C. Hill, A. P. Ault, P. J. DeMott, A. B. White, Ralph, F. M., and K. A. A. Prather. 2014. Chemical properties of insoluble precipitation residue particles. J. Aerosol Sci. 76:13–27. doi:10.1016/j.jaerosci.2014.05.005.
  • Creamean, J., K. Suski, D. Rosenfeld, A. Cazorla, P. DeMott, R. Sullivan, A. White, M. Ralph, P. Minnis, J. Comstock, et al. 2013. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science 339 (6127):1572–8. doi:10.1126/science.1227279.
  • Czerwieniec, G., S. Russell, H. Tobias, M. Pitesky, D. Fergenson, P. Steele, A. Srivastava, J. Horn, M. Frank, E. Gard, et al. 2005. Stable isotope labeling of entire Bacillus atrophaeus spores and vegetative cells using bioaerosol mass spectrometry. Anal. Chem. 77 (4):1081–7. doi:10.1021/ac0488098.
  • DeMott, P. J., A. J. Prenni, X. Liu, S. M. Kreidenweis, M. D. Petters, C. H. Twohy, M. S. Richardson, T. Eidhammer, and D. C. Rogers. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. U. S. A. 107 (25):11217–22. doi:10.1073/pnas.0910818107.
  • DeMott, P., O. Möhler, D. J. Cziczo, N. Hiranuma, M. D. Petters, S. S. Petters, F. Belosi, H. G. Bingemer, S. D. Brooks, C. Budke, M. Burkert-Kohn, K. N. Collier, A. Danielczok, O. Eppers, L. Felgitsch, S. Garimella, H. Grothe, P. Herenz, T. C. J. Hill, … J. Zenker. 2018. The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): Laboratory intercomparison of ice nucleation measurements. Atmos. Meas. Tech. 11 (11):6231–57. doi:10.5194/amt-11-6231-2018.
  • DeMott, P., and A. J. Prenni. 2010. New Directions: Need for defining the numbers and sources of biological aerosols acting as ice nuclei. Atmos. Environ. 44 (15):1944–5. doi:10.1016/j.atmosenv.2010.02.032.
  • Després, V. R., J. Alex Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M. O. Andreae, U. Pöschl, and R. Jaenicke. 2012. Primary biological aerosol particles in the atmosphere: A review. Tellus B: Chem. Phys. Meteorol. 64 (1):1–58. doi:10.3402/tellusb.v64i0.15598.
  • Engelbrecht, J. P., H. Moosmüller, S. Pincock, R. K. M. Jayanty, T. Lersch, and G. Casuccio. 2016. Technical note: Mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions. Atmos. Chem. Phys. 16 (17):10809–30. doi:10.5194/acp-16-10809-2016.
  • Engelstaedter, S., I. Tegen, and R. Washington. 2006. North African dust emissions and transport. Earth. Sci. Rev. 79 (1–2):73–100. doi:10.1016/j.earscirev.2006.06.004.
  • Fergenson, D., M. Pitesky, H. Tobias, P. Steele, G. Czerwieniec, S. Russell, C. Lebrilla, J. Horn, K. Coffee, A. Srivastava, et al. 2004. Reagentless detection and classification of individual bioaerosol particles in seconds. Anal. Chem. 76 (2):373–8. doi:10.1021/ac034467e.
  • Fröhlich-Nowoisky, J., C. J. Kampf, B. Weber, J. A. Huffman, C. Pöhlker, M. O. Andreae, N. Lang-Yona, S. M. Burrows, S. S. Gunthe, W. Elbert, H. Su, P. Hoor, E. Thines, T. Hoffmann, V. R. Després, and U. Pöschl. 2016. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182:346–76. doi:10.1016/j.atmosres.2016.07.018.
  • Gabey, A. M., M. W. Gallagher, J. Whitehead, J. R. Dorsey, P. H. Kaye, and W. R. Stanley. 2010. Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos. Chem. Phys. 10 (10):4453–66. doi:10.5194/acp-10-4453-2010.
  • Gabey, A. M., W. R. Stanley, M. W. Gallagher, and P. H. Kaye. 2011. The fluorescence properties of aerosol larger than 0.8 μ in urban and tropical rainforest locations. Atmos. Chem. Phys. 11 (11):5491–504. doi:10.5194/acp-11-5491-2011.
  • Gard, E., J. E. Mayer, B. D. Morrical, T. Dienes, D. P. Fergenson, and K. A. Prather. 1997. Real-time analysis of individual atmospheric aerosol particles: Design and performance of a portable ATOFMS. Anal. Chem. 69 (20):4083–91. doi:10.1021/ac970540n.
  • Gross, D. S., M. E. Gälli, P. J. Silva, and K. A. Prather. 2000. Relative sensitivity factors for alkali metal and ammonium cations in single-particle aerosol time-of-flight mass spectra. Anal. Chem. 72 (2):416–22. doi:10.1021/ac990434g.
  • Hader, J. D., T. P. Wright, and M. D. Petters. 2014. Contribution of pollen to atmospheric ice nuclei concentrations. Atmos. Chem. Phys. 14 (11):5433–49. doi:10.5194/acp-14-5433-2014.
  • Hill, T. C. J., P. J. Demott, Y. Tobo, J. Fröhlich-Nowoisky, B. F. Moffett, G. D. Franc, and S. M. Kreidenweis. 2016. Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys. 16 (11):7195–211. doi:10.5194/acp-16-7195-2016.
  • Hirst, E., P. H. Kaye, V. Foot, J. M. Clark, and P. B. Withers. 2004. An instrument for the simultaneous acquisition of size, shape, and spectral fluorescence data from single aerosol particles. Proc. SPIE, 5617:416–23. doi:10.1117/12.578269.
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer. 2017. Overview of ice nucleating particles. Meteorol. Monogr. 58:1.1–.33. doi:10.1175/AMSMONOGRAPHS-D-16-0006.1.
  • Marsden, N. A., M. J. Flynn, J. D. Allan, and H. Coe. 2018. On-line differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-ToF single particle mass spectrometer. Atmos. Meas. Tech. 11 (1). doi:10.5194/amt-11-195-2018.
  • Marsden, N. A., R. Ullrich, O. Möhler, S. Eriksen Hammer, K. Kandler, Z. Cui, P. I. Williams, M. J. Flynn, D. Liu, J. D. Allan, and H. Coe. 2019. Mineralogy and mixing state of North African mineral dust by on-line single-particle mass spectrometry. Atmos. Chem. Phys. 19 (4):2259–81. doi:10.5194/acp-19-2259-2019.
  • Martin, A. C., G. C. Cornwell, S. A. Atwood, K. A. Moore, N. E. Rothfuss, H. Taylor, P. J. DeMott, S. M. Kreidenweis, M. D. Petters, and K. A. Prather. 2017. Transport of pollution to a remote coastal site during gap flow from California’s interior: Impacts on aerosol composition, clouds, and radiative balance. Atmos. Chem. Phys. 17 (2):1491–509. doi:10.5194/acp-17-1491-2017.
  • O’Sullivan, D., B. J. Murray, T. L. Malkin, T. F. Whale, N. S. Umo, J. D. Atkinson, H. C. Price, K. J. Baustian, J. Browse, and M. E. Webb. 2014. Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components. Atmos. Chem. Phys. 14 (4):1853–67. doi:10.5194/acp-14-1853-2014.
  • Perring, A. E., J. P. Schwarz, D. G. Baumgardner, M. T. Hernandez, D. V. Spracklen, C. L. Heald, R. S. Gao, G. Kok, G. R. McMeeking, J. B. McQuaid, and D. W. Fahey. 2014. Airborne observations of regional variation in fluorescent aerosol across the United States. J. Geophys. Res.: Atmos. 120:1153–70. doi:10.1002/2014JD022495.
  • Plouguerné, E., L. de Souza, G. Sassaki, J. F. Cavalcanti, M. T. Villela Romanos, B. da Gama, R. C. Pereira, and E. Barreto-Bergter. 2013. Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed sargassum vulgare. Mar. Drugs. 11 (11):4628–40. doi:10.3390/md11114628.
  • Pratt, K. A., P. J. Demott, J. R. French, Z. Wang, D. L. Westphal, A. J. Heymsfield, C. H. Twohy, A. J. Prenni, and K. A. Prather. 2009a. In situ detection of biological particles in cloud ice-crystals. Nat. Geosci. 2 (6):398–401. doi:10.1038/ngeo521.
  • Pratt, K. A., L. E. Hatch, and K. A. Prather. 2009. Seasonal volatility dependence of ambient particle phase amines. Environ. Sci. Technol. 43 (14):5276–81. doi:10.1021/es803189n.
  • Pratt, K., J. Mayer, J. Holecek, R. Moffet, R. Sanchez, T. Rebotier, H. Furutani, M. Gonin, K. Fuhrer, Y. Su, et al. 2009b. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer. Anal. Chem. 81 (5):1792–800. doi:10.1021/ac801942r.
  • Rebotier, T. P., and K. A. Prather. 2007. Aerosol time-of-flight mass spectrometry data analysis: A benchmark of clustering algorithms. Anal. Chim. Acta 585:38–54. doi:10.1016/j.aca.2006.12.009.
  • Reinard, M. S., and M. V. Johnston. 2008. Ion formation mechanism in laser desorption ionization of individual nanoparticles. J. Am. Soc. Mass Spectrom. 19 (3):389–99. doi:10.1016/j.jasms.2007.11.017.
  • Rogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. Chen. 1998. Measurements of ice nucleating aerosols during SUCCESS. Geophys. Res. Lett. 25 (9):1383–6. doi:10.1029/97GL03478.
  • Sansonetti, J. E., and W. C. Martin. 2005. Handbook of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data 34 (4):1559–2259. doi:10.1063/1.1800011.
  • Savage, N. J., C. E. Krentz, T. Könemann, T. T. Han, G. Mainelis, C. Pöhlker, and J. Alex Huffman. 2017. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmos. Meas. Tech. 10 (11):4279–302. doi:10.5194/amt-10-4279-2017.
  • Schmidt, S., J. Schneider, T. Klimach, S. Mertes, L. P. Schenk, P. Kupiszewski, J. Curtius, and S. Borrmann. 2017. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment. Atmos. Chem. Phys. 17 (1):575–94. doi:10.5194/acp-17-575-2017.
  • Schneider, J., F. Freutel, S. R. Zorn, Q. Chen, D. K. Farmer, J. L. Jimenez, S. T. Martin, P. Artaxo, A. Wiedensohler, and S. Borrmann. 2011. Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmos. Chem. Phys. 11:11415–29. doi:10.5194/acp-11-11415-2011.
  • Silva, P. J. 2000. Source profiling and apportionment of airborne particles: A new approach using aerosol time-of-flight mass spectrometry. Riverside: University of California. doi:10.16953/deusbed.74839.
  • Silva, P. J., A. Carlin, and A. Prather. 2000. Single particle analysis of suspended soil dust from Southern California. Atmos. Environ. 34 (11):1811–20. doi:10.1016/S1352-2310(99)00338-6.
  • Silva, P. J., D. Y. Liu, C. A. Noble, and K. A. Prather. 1999. Size and chemical characterization of individual particles resulting from biomass burning of local Southern California species. Environ. Sci. Technol. 33 (18):3068–76. doi:10.1021/es980544p.
  • Silva, P., and K. Prather. 2000. Interpretation of mass spectra from organic compounds in aerosol time-of-flight mass spectrometry. Anal. Chem. 72 (15):3553–62. http://www.ncbi.nlm.nih.gov/pubmed/10952542. doi:10.1021/ac9910132.
  • Smith, D. L., K. H. Schram, and J. A. Mccloskey. 1983. The negative ion mass spectra of selected nucleosides. Biomed. Mass Spectrom. 10 (4):269–75. doi:10.1002/bms.1200100407.
  • Song, X. H., P. K. Hopke, D. P. Fergenson, and A. Prather. 1999. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Anal. Chem. 71 (4):860–5. doi:10.1021/ac9809682.
  • Spencer, M. T., and A. Prather. 2006. Using ATOFMS to determine OC/EC mass fractions in particles. Aerosol Sci. Technol. 40:585–94. doi:10.1080/02786820600729138.
  • Srivastava, A., M. Pitesky, P. Steele, H. Tobias, D. Fergenson, J. Horn, S. Russell, G. Czerwieniec, C. Lebrilla, E. Gard, et al. 2005. Comprehensive assignment of mass spectral signatures from individual Bacillus atrophaeus spores in matrix-free laser desorption/ionization bioaerosol mass spectrometry. Anal. Chem. 77 (10):3315–23. doi:10.1021/ac048298p.
  • Steele, P., A. Srivastava, M. E. Pitesky, D. P. Fergenson, H. J. Tobias, E. E. Gard, and M. Frank. 2005. Desorption/ionization fluence thresholds and improved mass spectral consistency measured using a flattop laser profile in the bioaerosol mass spectrometry of single Bacillus endospores. Anal. Chem. 77 (22):7448–54. doi:10.1021/ac051329b.
  • Steele, P., H. Tobias, D. Fergenson, M. Pitesky, J. Horn, G. Czerwieniec, S. Russell, C. Lebrilla, E. Gard, and M. Frank. 2003. Laser power dependence of mass spectral signatures from individual bacterial spores in bioaerosol mass spectrometry. Anal. Chem. 75 (20):5480–7. doi:10.1021/ac034419u.
  • Strzelecka, D., S. Chmielinski, S. Bednarek, and J. Jemielity. 2017. Analysis of mononucleotides by tandem mass spectrometry: Investigation of fragmentation pathways for phosphate- and ribose-modified nucleotide analogues. Sci. Rep. 7(May):17–23. doi:10.1038/s41598-017-09416-6.
  • Sultana, C. M., H. Al-Mashat, and K. A. Prather. 2017. Expanding single particle mass spectrometer analyses for the identification of microbe signatures in sea spray aerosol. Anal. Chem. 89 (19):10162–70. doi:10.1021/acs.analchem.7b00933.
  • Sultana, C. M., D. B. Collins, and K. A. Prather. 2017. The effect of structural heterogeneity in chemical composition on online single particle mass spectrometry analysis of sea spray aerosol particles. Environ. Sci. Technol. 51 (7):3660–8. doi:10.1021/acs.est.6b06399.
  • Sultana, C. M., G. C. Cornwell, P. Rodriguez, and K. A. Prather. 2017. FATES: A flexible analysis toolkit for the exploration of single-particle mass spectrometer data. Atmos. Meas. Tech. 10 (4):1323–34. doi:10.5194/amt-10-1323-2017.
  • Sun, J., and P. A. Ariya. 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ. 40 (5):795–820. doi:10.1016/j.atmosenv.2005.05.052.
  • Suski, K. J., T. C. J. Hill, E. J. T. Levin, A. Miller, P. J. DeMott, and S. M. Kreidenweis. 2018. Agricultural harvesting emissions of ice-nucleating particles. Atmos. Chem. Phys. 18 (18):13755–71. doi:10.5194/acp-18-13755-2018.
  • Thomson, D. S., A. M. Middlebrook, and D. M. Murphy. 1997. Thresholds for laser-induced ion formation from aerosols in a vacuum using ultraviolet and vacuum-ultraviolet laser wavelengths. Aerosol Sci. Technol. 26 (6):544–59. doi:10.1080/02786829708965452.
  • Tobias, H. J., M. E. Pitesky, D. P. Fergenson, P. T. Steele, J. Horn, M. Frank, and E. E. Gard. 2006. Following the biochemical and morphological changes of Bacillus atrophaeus cells during the sporulation process using Bioaerosol Mass Spectrometry. J. Microbiol. Methods. 67 (1):56–63. doi:10.1016/j.mimet.2006.03.001.
  • Tobias, H. J., M. P. Schafer, M. Pitesky, D. P. Fergenson, J. Horn, M. Frank, and E. E. Gard. 2005. Bioaerosol mass spectrometry for rapid detection of individual airborne mycobacterium tuberculosis H37Ra particles bioaerosol mass spectrometry for rapid detection of individual airborne mycobacterium tuberculosis H37Ra particles. Appl. Environ. Microbiol. 71 (10):6086–95. doi:10.1128/AEM.71.10.6086.
  • Tobo, Y., P. J. Demott, T. C. J. Hill, A. J. Prenni, N. G. Swoboda-Colberg, G. D. Franc, and S. M. Kreidenweis. 2014. Organic matter matters for ice nuclei of agricultural soil origin. Atmos. Chem. Phys. 14 (16):8521–31. doi:10.5194/acp-14-8521-2014.
  • Toprak, E., and M. Schnaiter. 2013. Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: Laboratory tests combined with a one year field study. Atmos. Chem. Phys. 13 (1):225–43. doi:10.5194/acp-13-225-2013.
  • Twohy, C. H., G. R. McMeeking, P. J. DeMott, C. S. McCluskey, T. C. J. Hill, S. M. Burrows, G. R. Kulkarni, M. Tanarhte, D. N. Kafle, and D. W. Toohey. 2016. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds. Atmos. Chem. Phys. 16 (13):8205–25. doi:10.5194/acp-16-8205-2016.
  • Vali, G., M. Christensen, R. W. Fresh, E. L. Gaylan, L. R. Maki, and R. C. Schnell. 1976. Biogenic ice nuclei. Part II. Bacterial sources. J. Atmos. Sci. 33:1565–70.
  • Varmuza, K., W. Werther, F. R. Krueger, J. Kissel, and E. R. Schmid. 1999. Organic substances in cometary grains: Comparison of secondary ion mass spectral data and californium-252 plasma desorption data from reference compounds. Int. J. Mass Spectrom. 189:79–92.
  • Wade, E. E., G. R. Farquar, P. T. Steele, E. L. McJimpsey, C. B. Lebrilla, and D. P. Fergenson. 2008. Wavelength and size dependence in single particle laser aerosol mass spectra. J. Aerosol Sci. 39 (8):657–66. doi:10.1016/j.jaerosci.2008.03.007.
  • Wenzel, R. J., and K. A. Prather. 2004. Improvements in ion signal reproducibility obtained using a homogeneous laser beam for on-line laser desorption/ionization of single particles. Rapid Commun. Mass Spectrom. 18 (13):1525–33. doi:10.1002/rcm.1509.
  • Wex, H., S. Augustin-Bauditz, Y. Boose, C. Budke, J. Curtius, K. Diehl, A. Dreyer, F. Frank, S. Hartmann, N. Hiranuma, E. Jantsch, Z. A. Kanji, A. Kiselev, T. Koop, O. Möhler, D. Niedermeier, B. Nillius, M. Rösch, D. Rose, … F. Stratmann. 2015. Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance. Atmos. Chem. Phys. 15 (3):1463–85. doi:10.5194/acp-15-1463-2015.
  • Willeke, K., X. Lin, and S. A. Grinshpun. 1998. Improved aerosol collection by combined impaction and centrifugal motion. Aeros. Sci. Technol. 28 (5):439–56. doi:10.1080/02786829808965536.
  • Woods, E., G. D. Smith, R. E. Miller, and T. Baer. 2002. Depth profiling of heterogeneously mixed aerosol particles using single-particle mass spectrometry. Anal. Chem. 74 (7):1642–9. doi:10.1021/ac0110909.
  • Wright, T. P., J. D. Hader, G. R. McMeeking, and M. D. Petters. 2014. High relative humidity as a trigger for widespread release of ice nuclei. Aerosol Sci. Technol. 48 (11):i–v. doi:10.1080/02786826.2014.968244.
  • Wright, T. P., and M. D. Petters. 2013. The role of time in heterogeneous freezing nucleation. J. Geophys. Res. Atmos. 118 (9):3731–43. doi:10.1002/jgrd.503652013.
  • Wright, T. P. and M. D. Petters. 2019. mdpetters/Drop-Freezing-Detection: v1 (Version v1). Zenodo. doi:10.5281/zenodo.3271562.
  • Yadav, S., R. E. Venezia, R. W. Paerl, and M. D. Petters. 2019. Characterization of ice nucleating particles over Northern India. J. Geophys. Res. Atmos. 124:10467–82. doi:10.1029/2019JD030702.
  • Yamaguchi, N., T. Ichijo, A. Sakotani, T. Baba, and M. Nasu. 2012. Global dispersion of bacterial cells on Asian dust. Sci. Rep. 2 (November 2010):525–6. doi:10.1038/srep00525.
  • Zawadowicz, M. A., K. D. Froyd, D. M. Murphy, and D. J. Cziczo. 2017. Improved identification of primary biological aerosol particles using single-particle mass spectrometry. Atmos. Chem. Phys. 17 (11):7193–212. doi:10.5194/acp-17-7193-2017.
  • Zawadowicz, M. A., K. D. Froyd, A. E. Perring, D. M. Murphy, D. V. Spracklen, C. L. Heald, P. R. Buseck, and D. J. Cziczo. 2019. Model-measurement consistency and limits of bioaerosol abundance over the continental United States. Atmos. Chem. Phys. 19 (22):13859–70. doi:10.5194/acp-19-13859-2019.
  • Zender, C. S. 2004. Quantifying mineral dust mass budgets: Terminology, constraints, and current estimates. EOS 85 (48):509–12. doi:10.1029/2003JD003483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.