708
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A consistent soot nucleation model for improved prediction of strain rate sensitivity in ethylene/air counterflow flames

ORCID Icon, ORCID Icon & ORCID Icon
Pages 636-654 | Received 11 Dec 2021, Accepted 23 Mar 2022, Published online: 28 Apr 2022

References

  • Abdelgadir, A., I. A. Rakha, S. A. Steinmetz, A. Attili, F. Bisetti, and W. L. Roberts. 2017. Effects of hydrodynamics and mixing on soot formation and growth in laminar coflow diffusion flames at elevated pressures. Combust. Flame 181:39–53. doi:10.1016/j.combustflame.2017.01.003.
  • Alberts, S. M., R. J. Thompson, H. K. Chelliah, and C. E. Dedic. 2022. Temperature and species measurements of counterflow flames using coherent anti-stokes Raman scattering. AIAA SCITECH 2022 Forum, 1872. doi:10.2514/6.2022-1872.
  • Appel, J., H. Bockhorn, and M. Frenklach. 2000. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of c2 hydrocarbons. Combust. Flame 121 (1–2):122–36. doi:10.1016/S0010-2180(99)00135-2.
  • Attili, A., F. Bisetti, M. E. Mueller, and H. Pitsch. 2014. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161 (7):1849–65. doi:10.1016/j.combustflame.2014.01.008.
  • Barlow, R., et al. 2000. Computational fluid dynamics in industrial combustion. 1st ed. Edited by R. S. Barlow, et al. New York: CRC Press. Available at: https://www.crcpress.com/Computational-Fluid-Dynamics-in-Industrial-Combustion/Jr-Gershtein-Li/p/book/9780849320002.
  • Barlow, R., A. Karpetis, J. Frank, and J.-Y. Chen. 2001. Scalar profiles and no formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127 (3):2102–18. doi:10.1016/S0010-2180(01)00313-3.
  • Beltrame, A., P. Porshnev, W. Merchan-Merchan, A. Saveliev, A. Fridman, L. Kennedy, O. Petrova, S. Zhdanok, F. Amouri, and O. Charon. 2001. Soot and no formation in methane–oxygen enriched diffusion flames. Combust. Flame 124 (1–2):295–310. doi:10.1016/S0010-2180(00)00185-1.
  • Bisetti, F., G. Blanquart, M. E. Mueller, and H. Pitsch. 2012. On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159 (1):317–35. doi:10.1016/j.combustflame.2011.05.021.
  • Blanquart, G., and H. Pitsch. 2009. A joint volume-surface-hydrogen multi-variate model for soot formation. Combustion Generated Fine Carbonaceous Particles, 437–63.
  • Böhm, H., H. Jander, and D. Tanke. 1998. PAH growth and soot formation in the pyrolysis of acetylene and benzene at high temperatures and pressures: Modeling and experiment. Symp. (Int.) Combust. 27 (1):1605–12. doi:10.1016/S0082-0784(98)80570-5.
  • Böhm, H., K. Kohse-Höinghaus, F. Lacas, C. Rolon, N. Darabiha, and S. Candel. 2001. On PAH formation in strained counterflow diffusion flames. Combust. Flame 124 (1–2):127–36. doi:10.1016/S0010-2180(00)00188-7.
  • Bouvet, N., D. Davidenko, C. Chauveau, L. Pillier, and Y. Yoon. 2014. On the simulation of laminar strained flames in stagnation flows: 1d and 2d approaches versus experiments. Combust. Flame 161 (2):438–52. doi:10.1016/j.combustflame.2013.09.010.
  • Cai, L., and H. Pitsch. 2015. Optimized chemical mechanism for combustion of gasoline surrogate fuels. Combust. Flame. 162 (5):1623–37. doi:10.1016/j.combustflame.2014.11.018.
  • Cenker, E., A. Bennett, and W. L. Roberts. 2017. Investigations of the long-term effects of LII on soot and bath gas. Aerosol Sci. Technol. 51 (12):1354–67. doi:10.1080/02786826.2017.1368444.
  • Cheng, J. C., and R. O. Fox. 2010. Kinetic modeling of nanoprecipitation using CFD coupled with a population balance. Ind. Eng. Chem. Res. 49 (21):10651–62. doi:10.1021/ie100558n.
  • Chong, S. T., V. Raman, M. E. Mueller, P. Selvaraj, and H. G. Im. 2019. Effect of soot model, moment method, and chemical kinetics on soot formation in a model aircraft combustor. Proc. Combust. Inst. 37 (1):1065–74. doi:10.1016/j.proci.2018.06.093.
  • Chu, H., M. Gu, H. Zhou, and F. Liu. 2014. Calculations of narrow-band transimissities and the planck mean absorption coefficients of real gases using line-by-line and statistical narrow-band models. Front. Energy 8 (1):41–8. doi:10.1007/s11708-013-0292-4.
  • Chung, S.-H., and A. Violi. 2011. Peri-condensed aromatics with aliphatic chains as key intermediates for the nucleation of aromatic hydrocarbons. Proc. Combust. Inst. 33 (1):693–700. doi:10.1016/j.proci.2010.06.038.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2008. Frequency response of counter flow diffusion flames to strain rate harmonic oscillations. Combust. Sci. Technol. 180 (5):767–84. doi:10.1080/00102200801893838.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2009. Soot formation in unsteady counterflow diffusion flames. Proc. Combust. Inst. 32 (1):1335–42. doi:10.1016/j.proci.2008.05.088.
  • Cuoci, A., A. Frassoldati, T. Faravelli, and E. Ranzi. 2015. Opensmoke++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Comput. Phys. Commun. 192:237–64. doi:10.1016/j.cpc.2015.02.014.
  • D’Alessio, A., A. Barone, R. Cau, A. D’Anna, and P. Minutolo. 2005. Surface deposition and coagulation efficiency of combustion generated nanoparticles in the size range from 1 to 10 nm. Proc. Combust. Inst. 30 (2):2595–603. doi:10.1016/j.proci.2004.08.267.
  • Decroix, M. E., and W. L. Roberts. 2000. Transient flow field effects on soot volume fraction in diffusion flames. Combust. Sci. Technol. 160 (1):165–89. doi:10.1080/00102200008935801.
  • Eaves, N. A., S. B. Dworkin, and M. J. Thomson. 2017. Assessing relative contributions of PAHs to soot mass by reversible heterogeneous nucleation and condensation. Proc. Combust. Inst. 36 (1):935–45. doi:10.1016/j.proci.2016.06.051.
  • Elvati, P., and A. Violi. 2013. Thermodynamics of poly-aromatic hydrocarbon clustering and the effects of substituted aliphatic chains. Proc. Combust. Inst. 34 (1):1837–43. doi:10.1016/j.proci.2012.07.030.
  • Faccinetto, A., C. Irimiea, P. Minutolo, M. Commodo, A. D’Anna, N. Nuns, Y. Carpentier, C. Pirim, P. Desgroux, C. Focsa, et al. 2020. Evidence on the formation of dimers of polycyclic aromatic hydrocarbons in a laminar diffusion flame. Commun. Chem. 3 (1):1–8. doi:10.1038/s42004-020-00357-2.
  • Franzelli, B., A. Cuoci, A. Stagni, M. Ihme, T. Faravelli, and S. Candel. 2017. Numerical investigation of soot-flame-vortex interaction. Proc. Combust. Inst. 36 (1):753–61. doi:10.1016/j.proci.2016.07.128.
  • Frenklach, M. 2002. Method of moments with interpolative closure. Chem. Eng. Sci. 57 (12):2229–39. doi:10.1016/S0009-2509(02)00113-6.
  • Frenklach, M., and A. M. Mebel. 2020. On the mechanism of soot nucleation. Phys. Chem. Chem. Phys. 22 (9):5314–31. doi:10.1039/d0cp00116c.
  • Frenklach, M., and H. Wang. 1991. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 23 (1):1559–66. doi:10.1016/S0082-0784(06)80426-1.
  • Frenklach, M., and H. Wang. 1994. Detailed mechanism and modeling of soot particle formation. In Soot formation in combustion, 165–92. Berlin, Heidelberg: Springer.
  • Herdman, J. D., and J. H. Miller. 2008. Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters. J. Phys. Chem. A 112 (28):6249–56. doi:10.1021/jp800483h.
  • Israelachvili, J. N. 2011. Intermolecular and surface forces. New York: Academic Press.
  • Jin, H., J. Guo, T. Li, Z. Zhou, H. G. Im, and A. Farooq. 2021a. Experimental and numerical study of polycyclic aromatic hydrocarbon formation in ethylene laminar co-flow diffusion flames. Fuel 289:119931. doi:10.1016/j.fuel.2020.119931.
  • Jin, H., J. Hao, J. Yang, J. Guo, Y. Zhang, C. Cao, and A. Farooq. 2021b. Experimental and kinetic modeling study of α-methyl-naphthalene pyrolysis: Part II. PAH formation. Combust. Flame 233:111530. doi:10.1016/j.combustflame.2021.111530.
  • Jin, H., L. Xing, D. Liu, J. Hao, J. Yang, and A. Farooq. 2021c. First aromatic ring formation by the radical-chain reaction of vinylacetylene and propargyl. Combust. Flame 225:524–34. doi:10.1016/j.combustflame.2020.11.034.
  • Johansson, K., M. Head-Gordon, P. Schrader, K. Wilson, and H. Michelsen. 2018. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361 (6406):997–1000. doi:10.1126/science.aat3417.
  • Kazemimanesh, M., C. Kuang, L. W. Kostiuk, and J. S. Olfert. 2020. Effect of sodium chloride on the evolution of size, mixing state, and light absorption of soot particles from a smoking laminar diffusion flame. Combust. Flame 218:168–78. doi:10.1016/j.combustflame.2020.04.001.
  • Kholghy, M. R., G. A. Kelesidis, and S. E. Pratsinis. 2018. Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. Phys. Chem. Chem. Phys. 20 (16):10926–38. doi:10.1039/c7cp07803j.
  • Koo, H., M. Hassanaly, V. Raman, M. E. Mueller, and K. Peter Geigle. 2017. Large-eddy simulation of soot formation in a model gas turbine combustor. J. Eng. Gas Turbines Power 139 (3):031503. doi:10.1115/1.4034448.
  • Kruse, S., A. Wick, P. Medwell, A. Attili, J. Beeckmann, and H. Pitsch. 2019. Experimental and numerical study of soot formation in counterflow diffusion flames of gasoline surrogate components. Combust. Flame 210:159–71. doi:10.1016/j.combustflame.2019.08.013.
  • Leschowski, M., K. Thomson, D. Snelling, C. Schulz, and G. Smallwood. 2015. Combination of LII and extinction measurements for determination of soot volume fraction and estimation of soot maturity in non-premixed laminar flames. Appl. Phys. B 119 (4):685–96. doi:10.1007/s00340-015-6092-2.
  • Leung, K. M., R. P. Lindstedt, and W. P. Jones. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combust. Flame 87 (3–4):289–305. doi:10.1016/0010-2180(91)90114-Q.
  • Li, Z., P. Liu, P. Zhang, H. He, S. H. Chung, and W. L. Roberts. 2019. Theoretical study of PAH growth by phenylacetylene addition. J. Phys. Chem. A 123 (47):10323–32. doi:10.1021/acs.jpca.9b09450.
  • Liu, P., B. Chen, Z. Li, A. Bennett, S. Sioud, S. M. Sarathy, and W. L. Roberts. 2019a. Evolution of oxygenated polycyclic aromatic hydrocarbon chemistry at flame temperatures. Combust. Flame 209:441–51. doi:10.1016/j.combustflame.2019.08.018.
  • Liu, P., Y. Zhang, Z. Li, A. Bennett, H. Lin, S. M. Sarathy, and W. L. Roberts. 2019b. Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition. Combust. Flame 202:276–91. doi:10.1016/j.combustflame.2019.01.023.
  • Liu, P., Z. Li, and W. L. Roberts. 2021. Growth network of PAH with 5-membered ring: Case study with acenaphthylene molecule. Combust. Flame 230:111449. doi:10.1016/j.combustflame.2021.111449.
  • Mahmoud, S., G. Nathan, Z. Alwahabi, Z. Sun, P. Medwell, and B. Dally. 2017. The effect of exit strain rate on soot volume fraction in turbulent non-premixed jet flames. Proc. Combust. Inst. 36 (1):889–97. doi:10.1016/j.proci.2016.08.055.
  • Marchisio, D. L., and R. O. Fox. 2005. Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36 (1):43–73. doi:10.1016/j.jaerosci.2004.07.009.
  • McGraw, R. 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27 (2):255–65. doi:10.1080/02786829708965471.
  • Mercier, X., O. Carrivain, C. Irimiea, A. Faccinetto, and E. Therssen. 2019. Dimers of polycyclic aromatic hydrocarbons: The missing pieces in the soot formation process. Phys. Chem. Chem. Phys. 21 (16):8282–94. doi:10.1039/C9CP00394K.
  • Mueller, M. E., G. Blanquart, and H. Pitsch. 2009. Hybrid method of moments for modeling soot formation and growth. Combust. Flame 156 (6):1143–55. doi:10.1016/j.combustflame.2009.01.025.
  • Narayanaswamy, K., G. Blanquart, and H. Pitsch. 2010. A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame 157 (10):1879–98. doi:10.1016/j.combustflame.2010.07.009.
  • Niemann, U., K. Seshadri, and F. A. Williams. 2015. Accuracies of laminar counterflow flame experiments. Combust. Flame 162 (4):1540–9. doi:10.1016/j.combustflame.2014.11.021.
  • Nobili, A., L. P. Maffei, A. Baggioli, M. Pelucchi, A. Cuoci, C. Cavallotti, and T. Faravelli. 2022. On the radical behavior of large polycyclic aromatic hydrocarbons in soot formation and oxidation. Combust. Flame 235:111692. doi:10.1016/j.combustflame.2021.111692.
  • Pejpichestakul, W., A. Frassoldati, A. Parente, and T. Faravelli. 2018. Kinetic modeling of soot formation in premixed burner-stabilized stagnation ethylene flames at heavily sooting condition. Fuel 234:199–206. doi:10.1016/j.fuel.2018.07.022.
  • Pope, C. J., and J. B. Howard. 1997. Simultaneous particle and molecule modeling (SPAMM): An approach for combining sectional aerosol equations and elementary gas-phase reactions. Aerosol Sci. Technol. 27 (1):73–94. doi:10.1080/02786829708965459.
  • Qamar, N., G. Nathan, Z. Alwahabi, and K. King. 2005. The effect of global mixing on soot volume fraction: Measurements in simple jet, precessing jet, and bluff body flames. Proc. Combust. Inst. 30 (1):1493–500. doi:10.1016/j.proci.2004.08.102.
  • Raj, A., M. Sander, V. Janardhanan, and M. Kraft. 2010. A study on the coagulation of polycyclic aromatic hydrocarbon clusters to determine their collision efficiency. Combust. Flame 157 (3):523–34. doi:10.1016/j.combustflame.2009.10.003.
  • Raj, A., I. D. C. Prada, A. A. Amer, and S. H. Chung. 2012. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons. Combust. Flame 159 (2):500–15. doi:10.1016/j.combustflame.2011.08.011.
  • Raj, A., M. J. Al Rashidi, S. H. Chung, and S. M. Sarathy. 2014. PAH growth initiated by propargyl addition: Mechanism development and computational kinetics. J. Phys. Chem. A 118 (16):2865–85.
  • Richter, H., S. Granata, W. H. Green, and J. B. Howard. 2005. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proc. Combust. Inst. 30 (1):1397–405. doi:10.1016/j.proci.2004.08.088.
  • Roy, S. P., P. G. Arias, V. R. Lecoustre, D. C. Haworth, H. G. Im, and A. Trouvé. 2014. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure. Aerosol Sci. Technol. 48 (4):379–91. doi:10.1080/02786826.2013.878017.
  • Salenbauch, S., A. Cuoci, A. Frassoldati, C. Saggese, T. Faravelli, and C. Hasse. 2015. Modeling soot formation in premixed flames using an extended conditional quadrature method of moments. Combust. Flame 162 (6):2529–43. doi:10.1016/j.combustflame.2015.03.002.
  • Selvaraj, P., P. G. Arias, B. J. Lee, H. G. Im, Y. Wang, Y. Gao, S. Park, S. M. Sarathy, T. Lu, and S. H. Chung. 2016. A computational study of ethylene–air sooting flames: Effects of large polycyclic aromatic hydrocarbons. Combust. Flame 163:427–36. doi:10.1016/j.combustflame.2015.10.017.
  • Shariatmadar, H., F. Hampp, and R. Lindstedt. 2021. Quantification of PAH concentrations in premixed turbulent flames crossing the soot inception limit. Proc. Combust. Inst. 38 (1):1163–72. doi:10.1016/j.proci.2020.06.359.
  • Sirignano, M., J. Kent, and A. D’Anna. 2013. Modeling formation and oxidation of soot in nonpremixed flames. Energy Fuels 27 (4):2303–15. doi:10.1021/ef400057r.
  • Slavinskaya, N. A., U. Riedel, S. B. Dworkin, and M. J. Thomson. 2012. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Combust. Flame 159 (3):979–95. doi:10.1016/j.combustflame.2011.10.005.
  • Totton, T. S., A. J. Misquitta, and M. Kraft. 2012. A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. Phys. Chem. Chem. Phys. 14 (12):4081–94. doi:10.1039/c2cp23008a.
  • Vandsburger, U., I. Kennedy, and I. Glassman. 1985. Sooting counter-flow diffusion flames with varying velocity gradients. Symp. (Int.) Combust. 20 (1):1105–12. doi:10.1016/S0082-0784(85)80600-7.
  • Veshkini, A., N. A. Eaves, S. B. Dworkin, and M. J. Thomson. 2016. Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames. Combust. Flame 167:335–52. doi:10.1016/j.combustflame.2016.02.024.
  • Wang, H., D. Du, C. Sung, and C. K. Law. 1996. Experiments and numerical simulation on soot formation in opposed-jet ethylene diffusion flames. Symp. (Int.) Combust. 26 (2):2359–68. doi:10.1016/S0082-0784(96)80065-8.
  • Wang, Y., and S. H. Chung. 2016. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames. Combust. Flame 165:433–44. doi:10.1016/j.combustflame.2015.12.028.
  • Wang, Y., and S. H. Chung. 2019. Soot formation in laminar counterflow flames. Prog. Energy Combust. Sci. 74:152–238. doi:10.1016/j.pecs.2019.05.003.
  • Wang, Y., A. Raj, and S. H. Chung. 2013. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combust. Flame 160 (9):1667–76. doi:10.1016/j.combustflame.2013.03.013.
  • Wang, Y., A. Raj, and S. H. Chung. 2015. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combust. Flame 162 (3):586–96. doi:10.1016/j.combustflame.2014.08.016.
  • Wen, J. Z., M. Thomson, S. Park, S. Rogak, and M. Lightstone. 2005. Study of soot growth in a plug flow reactor using a moving sectional model. Proc. Combust. Inst. 30 (1):1477–84. doi:10.1016/j.proci.2004.08.178.
  • Xiao, J., E. Austin, and W. Roberts. 2005. Relative polycyclic aromatic hydrocarbon concentrations in unsteady counterflow diffusion flames. Combust. Sci. Technol. 177 (4):691–713. doi:10.1080/00102200590917239.
  • Xu, L., F. Yan, M. Zhou, Y. Wang, and S. H. Chung. 2018. Experimental and soot modeling studies of ethylene counterflow diffusion flames: Non-monotonic influence of the oxidizer composition on soot formation. Combust. Flame 197:304–18. doi:10.1016/j.combustflame.2018.08.011.
  • Xu, L., F. Yan, M. Zhou, and Y. Wang. 2021. An experimental and modeling study on sooting characteristics of laminar counterflow diffusion flames with partial premixing. Energy 218:119479. doi:10.1016/j.energy.2020.119479.
  • Yamamoto, M., S. Duan, and S. Senkan. 2007. The effect of strain rate on polycyclic aromatic hydrocarbon (PAH) formation in acetylene diffusion flames. Combust. Flame 151 (3):532–41. doi:10.1016/j.combustflame.2006.06.001.
  • Yan, F., L. Xu, Y. Wang, S. Park, S. M. Sarathy, and S. H. Chung. 2019a. On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. Combust. Flame 202:228–42. doi:10.1016/j.combustflame.2019.01.020.
  • Yan, F., M. Zhou, L. Xu, Y. Wang, and S. H. Chung. 2019b. An experimental study on the spectral dependence of light extinction in sooting ethylene counterflow diffusion flames. Exp. Therm. Fluid Sci. 100:259–70. doi:10.1016/j.expthermflusci.2018.09.008.
  • Yuan, C., F. Laurent, and R. Fox. 2012. An extended quadrature method of moments for population balance equations. J. Aerosol Sci. 51:1–23. doi:10.1016/j.jaerosci.2012.04.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.