410
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

On-line determination of the chemical composition of single activated cloud condensation nuclei – a pilot study

, , , , &
Pages 673-687 | Received 12 Mar 2021, Accepted 21 Mar 2022, Published online: 25 May 2022

References

  • Ahern, A., R. Subramanian, G. Saliba, E. M. Lipsky, N. M. Donahue, and R. C. Sullivan. 2016. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers. Atmos. Meas. Tech. 9 (12):6117–37. doi:10.5194/amt-9-6117-2016.
  • Asmi, E., N. Kivekäs, V.-M. Kerminen, M. Komppula, A.-P. Hyvärinen, J. Hatakka, Y. Viisanen, and H. Lihavainen. 2011. Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010. Atmos. Chem. Phys. 11 (24):12959–72. doi:10.5194/acp-11-12959-2011.
  • Bilde, M., and B. Svenningsson. 2004. CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase. Tellus B Chem. Phys. Meteorol. 56 (2):128–34. doi:10.3402/tellusb.v56i2.16406.
  • Brands, M., M. Kamphus, T. Böttger, J. Schneider, F. Drewnick, A. Roth, J. Curtius, C. Voigt, A. Borbon, M. Beekmann, et al. 2011. Characterization of a newly developed aircraft-based laser ablation aerosol mass spectrometer (ALABAMA) and first field deployment in urban pollution plumes over Paris during MEGAPOLI 2009. Aerosol Sci. Technol. 45 (1):46–64. doi:10.1080/02786826.2010.517813.
  • Burkart, J., R. Hitzenberger, G. Reischl, H. Bauer, K. Leder, and H. Puxbaum. 2012. Activation of "synthetic ambient" aerosols - Relation to chemical composition of particles <100nm. Atmos. Environ. 54:583–91. doi:10.1016/j.atmosenv.2012.01.063.
  • Burkart, J., G. Steiner, G. Reischl, and R. Hitzenberger. 2011. Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna. Atmos. Environ. 45 (32):5751–9. doi:10.1016/j.atmosenv.2011.07.022.
  • Cziczo, D. J., P. J. DeMott, C. Brock, P. K. Hudson, B. Jesse, S. M. Kreidenweis, A. J. Prenni, J. Schreiner, D. S. Thomson, and D. M. Murphy. 2003. A method for single particle mass spectrometry of ice nuclei. Aerosol Sci. Technol. 37 (5):460–70. doi:10.1080/02786820300976.
  • Cziczo, D. J., D. S. Thomson, T. L. Thompson, P. J. DeMott, and D. M. Murphy. 2006. Particle analysis by laser mass spectrometry (PALMS) studies of ice nuclei and other low number density particles. Int. J. Mass Spectrom. 258 (1-3):21–9. doi:10.1016/j.ijms.2006.05.013.
  • Dameto de España, C., G. Steiner, H. Schuh, C. Sioutas, and R. Hitzenberger. 2019. Versatile aerosol concentration enrichment system (VACES) operating as a cloud condensation nuclei (CCN) concentrator: Development and laboratory characterization. Atmos. Meas. Tech. 12 (9):4733–44. doi:10.5194/amt-12-4733-2019.
  • Dameto de España, C., A. Wonaschuetz, G. Steiner, B. Rosati, A. Demattio, H. Schuh, and R. Hitzenberger. 2017. Long-term quantitative field study of New Particle Formation (NPF) events as a source of Cloud Condensation Nuclei (CCN) in the urban background of Vienna. Atmos. Environ. 164:289–98. doi:10.1016/j.atmosenv.2017.06.001.
  • Dusek, U., G. P. Reischl, and R. Hitzenberger. 2006. CCN activation of pure and coated carbon black particles. Environ. Sci. Technol. 40 (4):1223–30. doi:10.1021/es0503478.
  • Friedman, B., A. Zelenyuk, J. Beranek, G. Kulkarni, M. Pekour, A. Gannet Hallar, I. B. McCubbin, J. A. Thornton, and D. J. Cziczo. 2013. Aerosol measurements at a high-elevation site: Composition, size, and cloud condensation nuclei activity. Atmos. Chem. Phys. 13 (23):11839–51. doi:10.5194/acp-13-11839-2013.
  • Froyd, K. D. D. M. Murphy, C. A. Brock, P. Campuzano-Jost, J. E. Dibb, J. L. Jimenez, A. Kupc, A. M. Middlebrook, G. P. Schill, K. L. Thornhill, et al. 2019. A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry.
  • Furutani, H., M. Dallosto, G. Roberts, and K. Prather. 2008. Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations. Atmos. Environ. 42 (13):3130–42. doi:10.1016/j.atmosenv.2007.09.024.
  • Geller, M. D., S. Biswas, P. M. Fine, and C. Sioutas. 2005. A new compact aerosol concentrator for use in conjunction with low flow-rate continuous aerosol instrumentation. J. Aerosol Sci. 36 (8):1006–22. doi:10.1016/j.jaerosci.2004.11.015.
  • Gemayel, R., S. Hellebust, B. Temime-Roussel, N. Hayeck, J. T. Van Elteren, H. Wortham, and S. Gligorovski. 2016. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS). Atmos. Meas. Tech. 9 (4):1947–59. doi:10.5194/amt-9-1947-2016.
  • Giebl, H., A. Berner, G. Reischl, H. Puxbaum, A. Kasper-Giebl, and R. Hitzenberger. 2002. CCN activation of oxalic and malonic acid test aerosols with the University of Vienna cloud condensation nuclei counter. J. Aerosol Sci. 33 (12):1623–34. doi:10.1016/S0021-8502(02)00115-5.
  • Hinz, K. P., M. Greweling, F. Drews, and B. Spengler. 1999. Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles. J. Am. Soc. Mass Spectrom. 10 (7):648–60. doi:10.1016/S1044-0305(99)00028-8.
  • Hinz, K. P., and B. Spengler. 2007. Instrumentation, data evaluation and quantification in on-line aerosol mass spectrometry. J Mass Spectrom. 42 (7):843–60. doi:10.1002/jms.1262.
  • Hinz, K. P., A. Trimborn, E. Weingartner, S. Henning, U. Baltensperger, and B. Spengler. 2005. Aerosol single particle composition at the Jungfraujoch. J. Aerosol Sci. 36 (1):123–45. doi:10.1016/j.jaerosci.2004.08.001.
  • Hiranuma, N., M. Kohn, M. S. Pekour, D. A. Nelson, J. E. Shilling, and D. J. Cziczo. 2011. Droplet activation, separation, and compositional analysis: Laboratory studies and atmospheric measurements. Atmos. Meas. Tech. 4 (10):2333–43. doi:10.5194/amt-4-2333-2011.
  • Hudson, J. G. 2007. Variability of the relationship between particle size and cloud-nucleating ability. Geophys. Res. Lett. 34 (8):1–5. doi:10.1029/2006GL028850.
  • Jacobson, M. C., H.-C. Hansson, K. J. Noone, and R. J. Charlson. 2000. Organic atmospheric aerosols: Review and state of the science. Rev. Geophys. 38 (2):267–94. doi:10.1029/1998RG000045.
  • Johnston, M. V. 2000. Sampling and analysis of individual particles by aerosol mass spectrometry. J. Mass Spectrom. 35 (5):585–95. doi:10.1002/(SICI)1096-9888(200005)35:5<585::AID-JMS992>3.0.CO;2-K.
  • Kamphus, M., M. Ettner-Mahl, T. Klimach, F. Drewnick, L. Keller, D. J. Cziczo, S. Mertes, S. Borrmann, and J. Curtius. 2010. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos. Chem. Phys. 10 (16):8077–95. doi:10.5194/acp-10-8077-2010.
  • Kanakidou, M., J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, et al. 2005. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5 (4):1053–123. doi:10.5194/acp-5-1053-2005.
  • Kane, D. B., and M. V. Johnston. 2000. Size and Composition Biases on the Detection of Individual Ultrafine Particles by Aerosol Mass Spectrometry. Environ. Sci. Technol. 34 (23):4887–93. doi:10.1021/es001323y.
  • Kim, S., P. A. Jaques, M. Chang, T. Barone, C. Xiong, S. K. Friedlander, and C. Sioutas. 2001b. Versatile aerosol concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and coarse ambient particles Part II: Field evaluation. J. Aerosol. Sci. 32 (11):1299–314. doi:10.1016/S0021-8502(01)00058-1.
  • Kim, S., P. a. Jaques, M. Chang, J. Froines, and C. Sioutas. 2001a. Versatile concentration enrichment system (VACES) for simultaneous in vivo and in vitro evaluation of toxic effects of ultrafine, fine and course ambient particles. Part I: Development and laboratory characterization. J. Aerosol Sci. 32 (11):1281–97. doi:10.1016/S0021-8502(01)00057-X.
  • Liu, P., P. J. Ziemann, D. B. Kittelson, and P. H. McMurry. 1995a. Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22 (3):293–313. doi:10.1080/02786829408959748.
  • Liu, P., P. J. Ziemann, D. B. Kittelson, and P. H. McMurry. 1995b. Generating particle beams of controlled dimensions and divergence: II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22 (3):314–24. doi:10.1080/02786829408959749.
  • Marsden, N. A., M. J. Flynn, J. D. Allan, and H. Coe. 2018. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer. Atmos. Meas. Tech. 11 (1):195–213. doi:10.5194/amt-11-195-2018.
  • Marsden, N., M. J. Flynn, J. W. Taylor, J. D. Allan, and H. Coe. 2016. Evaluating the influence of laser wavelength and detection stage geometry on optical detection efficiency in a single-particle mass spectrometer. Atmos. Meas. Tech. 9 (12):6051–68. doi:10.5194/amt-9-6051-2016.
  • McFiggans, G., P. Artaxo, U. Baltensperger, H. Coe, M. C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonen, U. Lohmann, et al. 2006. The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 6 (9):2593–649. doi:10.5194/acp-6-2593-2006.
  • Murphy, D. M., D. J. Cziczo, K. D. Froyd, P. K. Hudson, B. M. Matthew, A. M. Middlebrook, and R. J. Weber. 2006. Single-peptide mass spectrometry of tropospheric aerosol particles. J. Geophys. Res. Atmosph. 111:1–15. doi:10.1029/2006JD007340.
  • Murphy, D. M., D. S. Thomson, and M. J. Mahoney. 1998. In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers. Science 282 (5394):1664–9. doi:10.1126/science.282.5394.1664.
  • Németh, Z., B. Rosati, N. Zíková, I. Salma, L. Bozó, C. Dameto de España, J. Schwarz, V. Ždímal, and A. Wonaschuetz. 2018. Comparison of atmospheric new particle formation events in three Central European cities. Atmos. Environ. 178:191–7. doi:10.1016/j.atmosenv.2018.01.035.
  • Neubauer, K. R., M. V. Johnston, and A. S. Wexler. 1997. On-line analysis of aqueous aerosols by laser desorption ionization. Int. J. Mass Spectrom. Ion Process. 163 (1-2):29–37. doi:10.1016/S0168-1176(96)04534-X.
  • Neubauer, K. R., M. V. Johnston, and A. S. Wexler. 1998. Humidity effects on the mass spectra of single aerosol particles. Atmos. Environ. 32 (14–15):2521–9. doi:10.1016/S1352-2310(98)00005-3.
  • Noble, C. A., and K. A. Prather. 2000. Real-time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols. Mass Spectrom. Rev. 19 (4):248–74. doi:10.1002/1098-2787(200007)19:4<248::AID-MAS3>3.0.CO;2-I.
  • Okada, K., and R. M. Hitzenberger. 2001. Mixing properties of individual submicrometer aerosol particles in Vienna. Atmos. Environ. 35 (32):5617–28. doi:10.1016/S1352-2310(01)00126-1.
  • Pachon, J. E., R. J. Weber, X. Zhang, J. A. Mulholland, and A. G. Russell. 2013. Revising the use of potassium (K) in the source apportionment of PM2.5. Atmos. Pollut. Res. 4 (1):14–21. doi:10.5094/APR.2013.002.
  • Pratt, K. A., P. J. DeMott, J. R. French, Z. Wang, D. L. Westphal, A. J. Heymsfield, C. H. Twohy, A. J. Prenni, and K. A. Prather. 2009. In situ detection of biological particles in cloud ice-crystals. Nature Geosci. 2 (6):398–401. doi:10.1038/ngeo521.
  • Pratt, K. A., and K. A. Prather. 2012. Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part II: On-line mass spectrometry techniques. Mass Spectrom. Rev. 31 (1):17–48. doi:10.1002/mas.20330.
  • Pruppacher, H. R., and J. D. Klett. 2010. Microphysics of Clouds and Precipitation. Netherlands: Springer. doi:10.1007/978-0-306-48100-0.
  • Quinn, P. K., T. S. Bates, D. J. Coffman, and D. S. Covert. 2008. Influence of particle size and chemistry on the cloud nucleating properties of aerosols. Atmos. Chem. Phys. 8 (4):1029–42. doi:10.5194/acp-8-1029-2008.
  • Ramisetty, R., A. Abdelmonem, X. Shen, H. Saathoff, T. Leisner, and C. Mohr. 2018. Exploring femtosecond laser ablation in single-particle aerosol mass spectrometry. Atmos. Meas. Tech. 11 (7):4345–60. doi:10.5194/amt-11-4345-2018.
  • Reisinger, P., A. Wonaschuetz, R. Hitzenberger, A. Petzold, H. Bauer, N. Jankowski, H. Puxbaum, X. Chi, and W. Maenhaut. 2008. Intercomparison of measurement techniques for black or elemental carbon under urban background conditions in wintertime: influence of biomass combustion. Environ. Sci. Technol. 42 (3):884–9. doi:10.1021/es0715041.
  • Reitz, P., S. R. Zorn, S. H. Trimborn, and A. M. Trimborn. 2016. A new, powerful technique to analyze single particle aerosol mass spectra using a combination of OPTICS and the fuzzy c-means algorithm. J. Aerosol Sci. 98:1–14. doi:10.1016/j.jaerosci.2016.04.003.
  • Roth, A., J. Schneider, T. Klimach, S. Mertes, D. Van Pinxteren, H. Herrmann, and S. Borrmann. 2016. Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010. Atmos. Chem. Phys. 16 (2):505–24. doi:10.5194/acp-16-505-2016.
  • Schmidt, S., J. Schneider, T. Klimach, S. Mertes, L. P. Schenk, P. Kupiszewski, J. Curtius, and S. Borrmann. 2017. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment. Atmos. Chem. Phys. 17 (1):575–94. doi:10.5194/acp-17-575-2017.
  • Shen, X., R. Ramisetty, C. Mohr, W. Huang, T. Leisner, and H. Saathoff. 2018. Laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF): Performance, reference spectra and classification of atmospheric samples. Atmos. Meas. Tech. 11 (4):2325–43. doi:10.5194/amt-11-2325-2018.
  • Shen, X., H. Saathoff, W. Huang, C. Mohr, R. Ramisetty, and T. Leisner. 2019. Understanding atmospheric aerosol particles with improved particle identification and quantification by single-particle mass spectrometry. Atmos. Meas. Tech. 12 (4):2219–40. doi:10.5194/amt-12-2219-2019.
  • Sioutas, C., S. Kim, and M. Chang. 1999. Development and evaluation of a prototype ultrafine particle concentrator. J. Aerosol Sci. 30 (8):1001–17. doi:10.1016/S0021-8502(98)00769-1.
  • Weiss, F., P. Baloh, C. Pfaller, E. C. Cetintas, A. Kasper-Giebl, A. Wonaschütz, M. Dimitrov, B. Hofko, H. Rechberger, and H. Grothe. 2018. Reducing paving emissions and workers' exposure using novel mastic asphalt mixtures. Build. Environ. 137:51–7. doi:10.1016/j.buildenv.2018.03.060.
  • Wonaschuetz, A., P. Kallinger, W. Szymanski, and R. Hitzenberger. 2017. Chemical composition of radiolytically formed particles using single-particle mass spectrometry. J. Aerosol Sci. 113:242–9. 2017 doi:10.1016/j.jaerosci.2017.07.012.
  • Wonaschuetz, A., A. Demattio, R. Wagner, J. Burkart, N. Zíková, P. Vodička, W. Ludwig, G. Steiner, J. Schwarz, and R. Hitzenberger. 2015. Seasonality of new particle formation in Vienna, Austria – influence of air mass origin and aerosol chemical composition. Atmos. Environ 118:118–26. doi:10.1016/j.atmosenv.2015.07.035.
  • Zauscher, M. D., M. J. Moore, G. S. Lewis, S. V. Hering, and K. A. Prather. 2011. Size Range Critical for Cloud Formation. Anal. Chem. 83 (6):2271–8. doi:10.1021/ac103152g.
  • Zelenyuk, A., D. Imre, Y. Cai, K. Mueller, Y. Han, and P. Imrich. 2006. Spectra Miner, an interactive data mining and visualization software for single particle mass spectroscopy: A laboratory test case. Int. J. Mass Spectrom. 258 (1–3):58–73. doi:10.1016/j.ijms.2006.06.015.
  • Zelenyuk, A., D. Imre, M. Earle, R. Easter, A. Korolev, R. Leaitch, P. Liu, A. M. Macdonald, M. Ovchinnikov, and W. Strapp. 2010. In situ characterization of cloud condensation nuclei, interstitial, and background particles using the single particle mass spectrometer, SPLAT II. Anal. Chem. 82 (19):7943–51. doi:10.1021/ac1013892.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.