347
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Modeling precipitation scavenging process along Libyan Coast during an extreme Saharan dust outbreak

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 711-731 | Received 15 Jun 2021, Accepted 18 Apr 2022, Published online: 27 May 2022

References

  • Adelsberger, K. A., and J. R. Smith. 2009. Desert pavement development and landscape stability on the Eastern Libyan Plateau. Egypt Geomorphol. 107 (3–4):178–94. doi:10.1016/j.geomorph.2008.12.005.
  • Ben-Mahmoud, K. 1995. The Libyan soil; composition, classification, properties, and agricultural potential (in Arabic). National Authority for Scientific Research, Benghazi, Libya.
  • Betts, A. K. 1986. A new convective adjustment scheme. Part 1: Observational and theoretical basis. Q. J. Roy. Meteor. Soc. 112 (473):677–91. doi:10.1002/qj.49711247307.
  • Brandt, J., J. H. Christensen, and L. M. Frohn. 2002. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmos. Chem. Phys. 2:397–417. doi:10.5194/acpd-2-825-2002.
  • Callot, Y., B. Marticorena, and G. Bergametti. 2000. Geomorphologic approach for modelling the surface features of arid environments in a model of dust emissions: application to the sahara desert. Geodinam. Acta. 13 (5):245–70. doi:10.1080/09853111.2000.11105373.
  • Cassola, F., F. Ferrari, and A. Mazzino. 2015. Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches. Atmos. Res. 164–165:210–25. doi:10.1016/j.atmosres.2015.05.010.
  • Copernicus Climate Change Service (C3S) of the Global Climate. 2017. ERA5: Fifth generation of ECMWF atmospheric reanalysis. Copernicus climate change service climate data store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home.
  • Desboeufs, K., E. Bon Nguyen, S. Chevaillier, S. Triquet, and F. Dulac. 2018. Fluxes and sources of nutrient and trace metal atmospheric deposition in the northwestern Mediterranean. Atmos. Chem. Phys. 18 (19):14477–92. doi:10.5194/acp-18-14477-2018.
  • Douaiba, B., A. Azzi, A. Khorsi, and A. Benlefki. 2014. Dry deposition from Sahara sources regions of western Africa. Adv. Meteorol. 2014:1–17. doi:10.1155/2014/419838.
  • Eddenjal, A. S. 2015. Dust/sand storms over Libya: Spatial distribution, frequency and seasonality. Technical Report. World Meteorological Organization (WMO). WMO. SDS-WAS Barcelona, (19 pp), SDS-WAS-2015-001.
  • Elatrash, M. S. 2004. Aeolian dust emission, transport and deposition in Western Libya. Doctoral diss., University of Nottingham.
  • El-Takhtiet, A. 1978. National atlas of Libya, Tripoli, Libya.
  • Engelstaedter, S., I. Tegen, and R. Washington. 2006. North African dust emissions and transport. Earth. Sci. Rev. 79 (1-2):73–100. doi:10.1016/j.earscirev.2006.06.004.
  • Ferrier, B. S. Y. Jin, Y. Lin, T. Black, E. Rogers, and G. DiMego. 2002. Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta Model. Proceedings of the 15th Conference on Numerical Weather Prediction, 12–16 August 2002. San Antonio, TX, Amer. Meteor. Soc., 280–3.
  • Figgis, B., B. Guo, W. Javed, S. Ahzi, and Y. Rémond. 2018. Dominant environmental parameters for dust deposition and resuspension in desert climates. Aerosol Sci. Technol. 52 (7):788–98. doi:10.1080/02786826.2018.1462473.
  • García, P., C. Pando, K. Haustein, O. Jorba Casellas, Z. Janjic, N. Huneeus, J. M. Baldasano Recio, and J. P. Perlwitz. 2011. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model–Part 1: Model description, annual simulations and evaluation. Atmos. Chem. Phys. 11 (24):13001–27.
  • Gläser, G., P. Knippertz, and B. Heinold. 2012. Orographic effects and evaporative cooling along a subtropical cold front: The case of the spectacular Saharan dust outbreak of March 2004. Monthly Weather Rev. 140 (8):2520–33. doi:10.1175/MWR-D-11-00315.1.
  • Gong, W., C. Stroud, and L. Zhang. 2011. Cloud processing of gases and aerosols in air quality modeling. Atmosphere. 2 (4):567–616. doi:10.3390/atmos2040567.
  • Janjic, Z, 1994. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122:927–45.
  • Jung, E., and Y. Shao. 2006. An intercomparison of four wet deposition schemes used in dust transport modeling. Global Planet. Change. 52 (1–4):248–60. doi:10.1016/j.gloplacha.2006.02.008.
  • Kallos, G. 1997. The regional weather forecasting system SKIRON: a general overview. In Proceedings of the Symposium on Regional Weather Prediction on Parallel Computer Environments, Athens, Greece.
  • Kallos, G., M. Astitha, P. Katsafados, and C. Spyrou. 2007. Long-range transport of anthropogenically and naturally produced particulate matter in the mediterranean and north atlantic: current state of knowledge. J. Appl Meteor. Climatol. 46 (8):1230–51. doi:10.1175/JAM2530.1.
  • Kallos, G., and P. Katsafados. 2008. Desert dust uptake-transport and deposition mechanisms-impacts of dust on radiation, clouds and precipitation. In Fluid mechanics of environmental interfaces, 113–44. Leiden, The Netherlands: Taylor and Francis e-Library.
  • Knippertz, P., and A. H. Fink. 2006. Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Q J. R Meteorol. Soc. 132 (617):1153–77. doi:10.1256/qj.05.109.
  • Knippertz, P, and J. B. W. Stuut. 2014. Mineral dust: A key player in the earth system. Dortdrecht, The Netherland: Springer (509 pp).
  • Koren, I., Yoram, J. Kaufman, R. Washington, M. C. Todd, Y. Rudich, M. J. Vanderlei, and D. Rosenfeld. 2006. The Bodele depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environ. Res. Lett. 1 (1):014005. doi:10.1088/1748-9326/1/1/014005.
  • Kubilay, N., S. Nickovic, C. Moulin, and F. Dulac. 2000. An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean. Atmos. Environ. 34 (8):1293–303. doi:10.1016/S1352-2310(99)00179-X.
  • Lao, Q., L. Jiao, F. Chen, L. Chen, and X. Sun. 2018. Influential factors and dry deposition of polychlorinated biphenyls (PCBs) in atmospheric particles at an Isolated Island (Pingtan Island) in Fujian Province, China. Atmosphere 9 (2):59. doi:10.3390/atmos9020059.
  • Liu, X., Z. Y. Yin, X. Zhang, and X. Yang, 2004. Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J. Geophys. Res. Atmosph. 109 (D16):D16210.1–16. doi:10.1029/2004JD004615.
  • Mahowald, N., S. Albani, J. F. Kok, S. Engelstaeder, R. Scanza, D. S. Ward, and M. G. Flanner. 2014. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15:53–71. doi:10.1016/j.aeolia.2013.09.002.
  • Middleton, N. J. 2019. Variability and trends in dust storm frequency on decadal timescales: climatic drivers and human impacts. Geosciences 9 (6):261. doi:10.3390/geosciences9060261.
  • Moore, R. A., R. Hanlon, C. Powers, D. G. Schmale, and B. C. Christner. 2020. Scavenging of sub-micron to micron-sized microbial aerosols during simulated rainfall. Atmosphere 11 (1):80. doi:10.3390/atmos11010080.
  • Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kakaliagou. 2001. A model for prediction of desert dust cycle in the atmosphere. J. Geophys. Res. 106 (D16):18113–29. doi:10.1029/2000JD900794.
  • Nickovic, S. D. Mihailovic, B. Rajkovic, and A. Papadopoulos. 1998. The weather forecasting system SKIRON: Description of the model. In Fluid mechanics of environmental interfaces, ed. C. Gualtieri and D. T. Mihailovic, 2nd ed. Novo Sad: Taylor & Francis.
  • O’Hara, S. L., M. L. Clarke, and M. S. Elatrash. 2006. Field measurements of desert dust deposition in Libya. Atmos. Environ. 40 (21):3881–97. doi:10.1016/j.atmosenv.2006.02.020.
  • Ogilbee, W, and H. A. Tarhuni. 1962. Ground water resources of the Qarahbulli Area, Tripolitania, United Kingdom of Libya, U. S. Geological Survey, 97 pp.
  • Ogilbee, W. R. C. Vorbis, and A. Russo. 1962. Ground water resources of the Sorman Area, Tripolitania, United Kingdom of Libya, Department of the Interior, United States, Geological Survey.
  • Pierce, J. R., B. Croft, J. K. Kodros, S. D. D’Andrea, and R. V. Martin. 2015. The importance of interstitial particle scavenging by cloud droplets in shaping the remote aerosol size distribution and global aerosol-climate effects. Atmosph. Chem. Phys. Discuss. 15 (11):6147–58.
  • Şen, Z., and A. G. Eljadid. 1999. Rainfall distribution function for Libya and rainfall prediction. J. Hydrol. Sci. 44 (5):665–80. doi:10.1080/02626669909492266.
  • Shao, Y. 2008. Physics and modelling of wind erosion. 2nd ed. Dordrecht: Springer.
  • Shao, Y., A. H. Fink, and M. Klose. 2010. Numerical simulation of a continental-scale Saharan dust event. J. Geophys. Res. 115:D13205. doi. doi:10.1029/2009JD012678.
  • Shao, Y., K.-H. Wyrwoll, A. Chappell, J. Huang, Z. Lin, G. H. McTainsh, M. Mikami, T. Y. Tanaka, X. Wang, and S. Yoon. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2 (4):181–204. doi:10.1016/j.aeolia.2011.02.001.
  • Slinn, W. G. N. 1984. Precipitation scavenging. Atmospheric Science and Power Production.
  • Steven, S.-K K., J. S. Fu, X. Dong, M.-T. Chuang, M. C. Gee Ooi, W.-S. Huang, S. M. Griffith, S. Kumar Pani, and N.-H. Lin. 2021. Sensitivity analysis of the dust emission treatment in CMAQv5.2.1 and its application to long-range transport over East Asia. Atmos. Environ. 257:118441. doi:10.1016/j.atmosenv.2021.118441.
  • Tegen, I. 2003. Modeling the mineral dust aerosol cycle in the climate system. Quat. Sci. Rev. 22 (18-19):1821–34. doi:10.1016/S0277-3791(03)00163-X.
  • Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben. 2002. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 59 (3):398–413. doi:10.1175/1520-0469(2002)059<0398:ALTROA>2.0.CO;2.
  • Tsarpalis, K., A. Papadopoulos, N. Mihalopoulos, C. Spyrou, S. Michaelides, and P. Katsafados. 2018. The implementation of a mineral dust wet deposition scheme in the GOCART-AFWA module of the WRF model. Remote Sensing 10 (10):1595. doi:10.3390/rs10101595.
  • Wu, Y., J. Liu, J. Zhai, L. Cong, Y. Wang, W. Ma, Z. Zhang, and C. Li. 2018. Comparison of dry and wet deposition of particulate matter in near-surface waters during summer. PLoS One. 13 (6):e0199241. doi:10.1371/journal.pone.0199241.
  • Zhang, X., L. Zhao, D. Tong, G. Wu, M. Dan, and B. Teng. 2016. A systematic review of global desert dust and associated human health effects. Atmosphere 7 (12):158. doi:10.3390/atmos7120158.
  • Zhang, Z., W. Zhou, and L. Yang. 2019. Analysis of dust wet deposition in the mid-latitudes of the Northern Hemisphere. Air Qual. Atmos. Health. 12 (2):217–27. doi:10.1007/s11869-018-0652-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.