1,130
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Albedo reduction for snow surfaces contaminated with soot aerosols: Comparison of experimental results and models

, , , &
Pages 847-858 | Received 01 Apr 2022, Accepted 13 Jun 2022, Published online: 18 Jul 2022

References

  • Aoki, T., T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio. 2000. Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J. Geophys. Res. 105 (D8):10219–36. doi:10.1029/1999JD901122.
  • Beres, N. D., M. Lapuerta, F. Cereceda-Balic, and H. Moosmüller. 2020. Snow surface albedo sensitivity to black carbon: radiative transfer modelling. Atmosphere 11 (10):1077. doi:10.3390/atmos11101077.
  • Bird, R. E., and C. Riordan. 1986. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth's surface for cloudless atmospheres. J. Climate Appl. Meteor. 25 (1):87–97. > 2.0.CO;2. doi:10.1175/1520-0450(1986)025 < 0087:SSSMFD.
  • Bohren, C, and D. Huffman. 1983. Absorption and scattering of light by small particles. Wiley Professional Paperback Edition. Wiley-Interscience, New York.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi:10/1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assesment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Bruggeman, D. A. G. 1937. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen. Ann. Phys. 421 (2):160–78. doi:10.1002/andp.19374210205.
  • Cereceda-Balic, F., T. Gorena, C. Soto, V. Vidal, M. Lapuerta, and H. Moosmüller. 2019. Optical determination of black carbon mass concentrations in snow samples: A new analytical method. Sci. Total Environ. 697:133934. doi:10.1016/j.scitotenv.2019.133934.
  • Cereceda-Balic, F., V. Vidal, H. Moosmüller, and M. Lapuerta. 2018. Reduction of snow albedo from vehicle emissions at Portillo, Chile. Cold Reg. Sci. Technol. 146:43–52. doi:10.1016/j.coldregions.2017.11.008.
  • Chang, H., and T. T. Charalampopoulos. 1990. Determination of the wavelength dependence of refractive indices of flame soot. Proc Roy Soc Lond. Ser A 430 (1880):577–91. doi:10.1098/rspa.1990.0107.
  • Dalzell, W. H., and A. F. Sarofim. 1969. Optical constants of soot and their application to heat-flux calculations. J. Heat Transf. 91 (1):100–4. doi:10.1115/1.3580063.
  • Dobbins, R. A., and C. M. Megaridis. 1991. Absorption and scattering of light by polydisperse aggregates. Appl. Opt. 30 (33):4747–54. doi:10.1364/AO.30.004747.
  • Dumont, M., O. Brissaud, G. Picard, B. Schmitt, J. C. Gallet, and Y. Arnaud. 2010. High-accuracy measurements of snow bidirectional reflectance distribution function at visible and NIR wavelengths – comparison with modelling results. Atmos. Chem. Phys. 10 (5):2507–20. doi:10.5194/acp-10-2507-2010.
  • Fierz, C. R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov. 2009. The international classification for seasonal snow on the ground. IHP-VII Technical Documents in Hydrology 83, IACS Contribution N°1, UNESCO-IHP, Paris.
  • Flanner, M. G., J. B. Arnheim, J. M. Cook, C. Dang, C. He, X. Huang, D. Singh, S. M. Skiles, C. A. Whicker, and C. S. Zender. 2021. SNICAR-ADv3: a community tool for modeling spectral snow albedo. Geosci. Model Dev. 14 (12):7673–704. doi:10.5194/gmd-14-7673-2021.
  • Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch. 2009. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 9 (7):2481–97. doi:10.5194/acp-9-2481-2009.
  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch. 2007. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112 (D11):D11202. doi:10.1029/2006JD008003.
  • Garnett, J. C. M. 1904. Colours in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London. Ser. A. 203:385–420.
  • GCM-UCLM. 2022. Grupo de Combustibles y Motores, University of Castilla-La Mancha. https://blog.uclm.es/areammt/rad-soot/.
  • Ginot, P., M. Dumont, S. Lim, N. Patris, J. D. Taupin, P. Wagnon, A. Gilbert, Y. Arnaud, A. Marinoni, P. Bonasoni, et al. 2014. A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): Variability and potential impact on melting of Himalayan glaciers. Cryosphere 8 (4):1479–96. doi:10.5194/tc-8-1479-2014.
  • Gmachowski, L. 2002. Calculation of the fractal dimension of aggregates. Colloid Surf. 211 (2–3):197–203. doi:10.1016/S0927-7757(02)00278-9.
  • González-Correa, S., D. Gómez-Doménech, R. Ballesteros, M. Lapuerta, D. Pacheco-Ferrada, R. P. Flores, L. Castro, X. Fadic-Ruiz, and F. Cereceda-Balic. 2022. Impact of vehicle soot agglomerates on snow albedo. Atmosphere 13 (5):801. doi:10.3390/atmos13050801.
  • Habib, Z. G., and P. Vervisch. 1988. On the refractive index of soot at flame temperature. Combust. Sci. Technol. 59 (4-6):261–74. doi:10.1080/00102208808947100.
  • Hadley, O. L., and T. W. Kirchstetter. 2012. Black-carbon reduction of snow albedo. Nature Clim. Change 2 (6):437–40. doi:10.1038/nclimate1433.
  • Irvine, W. M., and J. B. Pollack. 1968. Infrared optical properties of water and ice spheres. Icarus 8 (1–3):324–60. doi:10.1016/0019-1035(68)90083-3.
  • Jacobi, H. W., S. Lim, M. Ménégoz, P. Ginot, P. Laj, P. Bonasoni, P. Stocchi, A. Marinoni, and Y. Arnaud. 2015. Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: Observations and modeling of the impact on snow albedo, melting, and radiative forcing. Cryosphere 9 (4):1685–99. doi:10.5194/tc-9-1685-2015.
  • Joseph, W. J., J. H. Wiscombe, and J. A. Weinman. 1976. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci. 33 (12):2452–9. > 2.0.CO;2. doi:10.1175/1520-0469(1976)033 < 2452:TDEAFR.
  • Klein, A. G., and J. Stroeve. 2002. Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol. 34:45–52. doi:10.3189/172756402781817662.
  • Köylü, U. O., and G. M. Faeth. 1994. Optical prorperties of overfire soot in buoyant turbulent diffusion flames at long residence times. J. Heat Transfer 116 (1):152–9. doi:10.1115/1.2910849.
  • Kwiecinska, B., D. G. Murchison, and E. Scott. 1977. Optical properties of graphite. J. Appl. Phys. 109 (3):289–302. doi:10.1111/j.1365-2818.1977.tb01142.x.
  • Lakhtakia, C. S., and A. Vikram. 1993. Variations of the effective refractive index of a particulate composite. Opt. Eng. 32 (8):1996–8. doi:10.1117/12.146436.
  • Lapuerta, M., R. Ballesteros, and F. J. Martos. 2006. A method to determine the fractal dimension of diesel soot agglomerates. J. Colloid Interface Sci. 303 (1):149–58. doi:10.1016/j.jcis.2006.07.066.
  • Lapuerta, M., R. Ballesteros, and F. Martos. 2009. The effect of diesel engine conditions on the size and morphology of soot particles. IJVD. 50 (1/2/3/4):91–106. doi:10.1504/IJVD.2009.024972.
  • Lapuerta, M., S. González-Correa, F. Cereceda-Balic, and H. Moosmüller. 2021. Comparison of equations used to estimate soot agglomerate absorption efficiency with the Rayleigh-Debye-Gans approximation. J. Quant. Spectrosc. Radiat. Transf. 262 (107522):107522. doi:10.1016/j.jqsrt.2021.107522.
  • Lee, W. S., R. L. Bhawar, M. K. Kim, and J. Sang. 2013. Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring. Atmos. Environ. 75:113–22. doi:10.1016/j.atmosenv.2013.04.004.
  • Lee, C., and S. Tien. 1981. Optical constants of soot in hydrocarbon flames. Eighteenth Sympos. Int. Combust. 18 (1):1159–66. doi:10.1016/S0082-0784(81)80120-8.
  • Liu, D., C. He, J. P. Schwartz, and X. Wang. 2020. Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. Climate Atmos. Sci. 40:1–18. doi:10.1038/s41612-020-00145-8.
  • Lorentz, H. A. 1937. Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern. 1–138. Collected Papers: Volume V, Dordrecht: Springer Netherlands.
  • Lumme, K., and J. Rahola. 1994. Light scattering by porous dust particles in the discrete-dipole approximation. ApJ. 425:653–67. doi:10.1086/174012.
  • Macke, A., J. Mueller, and E. Raschke. 1996. Single scattering properties of atmospheric ice crystals. J. Atmos. Sci. 53 (19):2813–25. doi:10.1175/1520-0469(1996)053 < 2813:SSPOAI>2.0.CO;2.
  • Mackowski, D. W. 1995. Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles. Appl. Opt. 34 (18):3535–45. Doi: 10.1029/95GL00798.
  • Manninen, T., K. Anttila, E. Jääskeläinen, A. Riihelä, J. Peltoniemi, P. Räisänen, P. Lahtinen, N. Siljamo, L. Thölix, O. Meinander, et al. 2021. Effect of small-scale snow surface roughness on snow albedo and reflectance. The Cryosphere 15 (2):793–820. doi:10.5194/tc-15-793-2021.
  • Marks, D., J. Dozier, and R. E. Davis. 1992. Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 1. Meteorological measurements and monitoring. Water Resour. Res. 28 (11):3029–42. doi:10.1029/92WR01482.
  • Mishchenko, M. I., A. A. Lacis, B. E. Carlson, and L. D. Travis. 1995. Nonsphericity of dust‐like tropospheric aerosols: Implications for aerosol remote sensing and climate modeling. Geophys. Res. Lett. 22 (9):1077–80. doi:10.1029/95GL00798.
  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott. 2009. Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Radiat. Transf. 110 (11):844–78. doi:10.1016/j.jqsrt.2009.02.035.
  • Moosmüller, H., and C. M. Sorensen. 2018. Small and large particle limits of single scattering albedo for homogeneous, spherical particles. J. Quant. Spectrosc. Radiat. Transf. 204:250–5. doi:10.1016/j.jqsrt.2017.09.029.
  • Mountain, R. D., and G. W. Mulholland. 1988. Light scattering from simulated smoke agglomerates. Langmuir 4 (6):1321–6. doi:10.1021/la00084a021.
  • Naumann, K. H. 2003. COSIMA—a computer program simulating the dynamics. J. Aerosol Sci. 34 (10):1371–97. doi:10.1016/S0021-8502(03)00367-7.
  • Painter, T. H., and J. Dozier. 2004. Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution. J. Geophys. Res. 109 (D18):1–21. doi:10.1029/2003JD004458.
  • Painter, T. H., K. Rittger, C. McKenzie, P. Slaughter, R. E. Davis, and J. Dozier. 2009. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 113 (4):868–79. doi:10.1016/j.rse.2009.01.001.
  • Patterson, E. M., D. A. Gillette, and B. H. Stockton. 1977. Complex index of refraction between 300 and 700 nm for Saharan aerosols. J. Geophys. Res. 82 (21):3153–60. doi:10.1029/JC082i021p03153.
  • Peltoniemi, J. I., M. Gritsevich, T. Hakala, P. Dagsson-Waldhauserová, K. Anttila, H. R. Hannula, N. Kivekäs, H. Lihavainen, O. Meinander, J. Svensson, et al. 2015. Soot on snow experiment: bidirectional reflectance factor measurements of contaminated snow. Cryosphere 9 (6):2323–37. doi:10.5194/tc-9-2323-2015.
  • Peltoniemi, J. I., S. Kaasalainen, J. Näränen, L. Matikainen, and J. Piironen. 2005. Measurement of directional and spectral signatures of light reflectance by snow. IEEE Trans. Geosci. Remote Sens. 43 (10):2294–304. doi:10.1109/TGRS.2005.855131.
  • Picard, G., Q. Libois, and L. Arnaud. 2016. Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow. The Cryosphere 10 (6):2655–72. doi:10.5194/tc-10-2655-2016.
  • Polyanskiy, M. 2021. Refractive Index. INFO, 2008–2020. Accessed December 7, 2021. https://refractiveindex.info/?shelf=main&book=C&page=Djurisic-o
  • Pomeroy, J. W, and D. M. Gray. 1995. Snowcover accumulation, relocation, and management. National Hydrology Research Institute Science Report, 7:1–144. Available from National Hydrology Research Institute, Saskatoon, Canada.
  • Popovicheva, O., D. Baumgardner, R. Subramanian, G. Kok, R. Cary, E. Vlasenko, T. Khokhlova, N. Shonija, and E. Kireeva. 2011. Tailored graphitized soot as reference material for EC/OC measurement validation. Atmos. Meas. Tech. 4 (5):923–32. doi:10.5194/amt-4-923-2011.
  • Prăvălie, R. 2016. Drylands extent and environmental issues. A global approach. Earth. Sci. Rev. 161:259–78. doi:10.1016/j.earscirev.2016.08.003.
  • Russo, C., B. Apicella, J. S. Lighty, A. Ciajolo, and A. Tregrossi. 2017. Optical properties of organic carbon and soot produced in an inverse diffusion flame. Carbon 124:372–9. doi:10.1016/j.carbon.2017.08.073.
  • Schaepman-Strub, G., M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik. 2006. Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sens. Environ. 103 (1):27–42. doi:10.1016/j.rse.2006.03.002.
  • Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9 (7):671–5. doi:10.1038/nmeth.2089.
  • Shivola, A. 2000. Mixing rules with complex dielectric coefficients. Subsurf. Sens. Technol. Appl. 1 (4):393–415. doi:10.1023/A:1026511515005.
  • Skiles, S. M., T. H. Painter, and G. S. Okin. 2017. A method to retrieve the spectral complex refractive index and single scattering optical properties of dust deposited in mountain snow. J. Glaciol. 63 (237):133–47. doi:10.1017/jog.2016.126.
  • Smith, A. J. A., and R. G. Grainger. 2014. Simplifying the calculation of light scattering properties for black carbon fractal aggregates. Atmos. Chem. Phys. 14 (15):7825–36. doi:10.5194/acp-14-7825-2014.
  • SnowTARTES. 2021. Accessed 7 March 2022. https://snowtartes.pythonanywhere.com/.
  • Sorensen, C. M., J. Yon, F. Liu, J. Maughan, W. R. Heinson, and M. J. Berg. 2018. Light scattering and absorption by fractal aggregates including soot. J. Quant. Spectrosc. Radiat. Transf. 217:459–73. doi:10.1016/j.jqsrt.2018.05.016.
  • Stagg, B. J., and T. T. Charalampopoulos. 1993. Refractive indices of pyrolytic graphite, amorphous carbon, and flame soot in the temperature range 25° to 600°C. Combust. Flame 94 (4):381–96. doi:10.1016/0010-2180(93)90121-I.
  • Tanikawa, T., K. Kuchiki, T. Aoki, H. Ishimoto, A. Hachikubo, M. Niwano, M. Hosaka, S. Matoba, Y. Kodama, Y. Iwata, et al. 2020. Effects of snow grain shape and mixing state of snow impurity on retrieval of snow physical parameters from ground‐based optical instrument. J. Geophys. Res.: Atmos. 125:e2019. JD031858. doi:10.1029/2019JD031858.
  • Toon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam. 1989. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres. J. Geophys. Res. 94 (D13):16287–301. doi:10.1029/JD094iD13p16287.
  • Wang, Z., C. B. Schaaf, M. J. Chopping, A. H. Strahler, J. Wang, M. O. Román, A. V. Rocha, C. E. Woodcock, and Y. Shuai. 2012. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 117:264–80. doi:10.1016/j.rse.2011.10.002.
  • Warren, S. G. 2019. Optical properties of ice and snow. Philos. Trans. R. Soc. Lond., A. 377 (2146):1–17. doi:10.1098/rsta.2018.0161.
  • Warren, S. G., and R. E. Brandt. 2008. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res. 113 (D14):1–10. doi:10.1029/2007JD009744.
  • Weingartner, E., H. Burtscher, and U. Baltensperger. 1997. Hygroscopic properties of carbon and diesel soot particles. Atmos. Environ. 34 (15):2311–27. doi:10.1016/S1352-2310(97)00023-X.
  • Wiscombe, W. J., and J. H. Joseph. 1977. The range of validity of the Eddington approximation. Icarus 32 (3):362–77. doi:10.1016/0019-1035(77)90008-2.
  • Wiscombe, W. J., and S. G. Warren. 1980. A model for the spectral albedo of snow. I: pure snow. J. Atmos. Sci. 37 (12):2712–33. doi:10.1175/1520-0469(1980)037 < 2712:AMFTSA>2.0.CO;2.
  • Yang, P., and Q. Fu. 2009. Dependence of ice crystal optical properties on particle aspect ratio. J. Quant. Spectrosc. Radiat. Transf. 110 (14–16):1604–14. doi:10.1016/j.jqsrt.2009.03.004.
  • Yon, J., A. Bescond, and F. Liu. 2015. On the radiative properties of soot aggregates part 1: Necking and overlapping. J. Quant. Spectrosc. Radiat. Transf. 162:197–206. doi:10.1016/j.jqsrt.2015.03.027.