2,231
Views
8
CrossRef citations to date
0
Altmetric
Editorial

Challenges of integrating aerosol dynamics into SARS-CoV-2 transmission models

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Buonanno, G., L. Stabile, and L. Morawska. 2020. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ. Int. 141:105794. doi:10.1016/j.envint.2020.105794.
  • Buonanno, G., L. Morawska, and L. Stabile. 2020. Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environ. Int. 145:106112. doi:10.1016/j.envint.2020.106112.
  • Cuevas-Maraver, J., P. G. Kevrekidis, Q. Y. Chen, G. A. Kevrekidis, V. Villalobos-Daniel, Z. Rapti, and Y. Drossinos. 2021. Lockdown measures and their impact on single- and two-age-structured epidemic model for the COVID-19 outbreak in Mexico. Math. Biosci. 336:108590. doi:10.1016/j.mbs.2021.108590.
  • Dabisch, P., M. Schuit, A. Herzog, K. Beck, S. Wood, M. Krause, D. Miller, W. Weaver, D. Freeburger, I. Hooper, et al. 2021. The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Sci. Technol. 55 (2):142–53. doi:10.1080/02786826.2020.1829536.
  • Drewnick, F., J. Pikmann, F. Fachinger, L. Moormann, F. Sprang, and S. Borrmann. 2021. Aerosol filtration efficiency of household materials for homemade face masks: Influence of material properties, particle size, particle electrical charge, face velocity, and leaks. Aerosol Sci. Technol. 55 (1):63–79. doi:10.1080/02786826.2020.1817846.
  • Drossinos, Y, and N. I. Stilianakis. 2020. What aerosol physics tells us about airborne pathogen transmission. Aerosol Sci. Technol. 54 (6):639–43. doi:10.1080/02786826.2020.175105.
  • Drossinos, Y., T. P. Weber, and N. I. Stilianakis. 2021. Droplets and aerosols: An artificial dichotomy in respiratory virus transmission. Health Sci. Rep. 4 (2):e275. doi:10.1002/hsr2.275.
  • Gregson, F. K. A., S. Sheikh, J. Archer, H. E. Symons, J. S. Walker, A. E. Haddrell, C. M. Orton, F. W. Hamilton, J. M. Brown, B. R. Bzdek, et al. 2022. Analytical challenges when sampling and characterising exhaled aerosol. Aerosol Sci. Technol. 56 (2)1: 60–175. doi:10.1080/02786826.2021.1990207.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. 2nd ed. New York: John Wiley & Sons.
  • Kelly, S. J., P. Martinsen, and S. Tatkov. 2021. Rapid changes in mucociliary transport in the tracheal epithelium caused by unconditioned room air or nebulized hypertonic saline and mannitol are not determined by frequency of beating cilia. Intensive Care Med. Exp. 9 (1):8. doi:10.1186/s40635-021-00374-y.
  • Kevrekidis, P. G., J. Cuevas-Maraver, Y. Drossinos, Z. Rapti, and G. A. Kevrekidis. 2021. Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples. Phys. Rev. E 104 (2-1):024412. doi:10.1103/PhysRevE.104.024412.
  • Kevrekidis, G. A., Z. Rapti, Y. Drossinos, P. G. Kevrekidis, M. A. Barmann, Q. Y. Chen, and J. Cuevas-Maraver. 2022. Backcasting COVID-19: A physics-informed estimate for early case incidence. arXiv preprint 2202.00507v1. doi:10.48550/ARXIV.2202.00507.
  • Kioutsioukis, I., N. I. Stilianakis, and Y. Drossinos. 2022. A modelling quantification of COVID-19 control strategies. Abstract, 11th International Aerosol Conference, September 4-9, Athens.
  • Kormuth, K. A., K. Lin, A. J. Prussin, II, E. P. Vejerano, A. J. Tiwari, S. S. Cox, M. M. Myerburg, S. S. Lakdawala, and L. C. Marr. 2018. Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity. J. Infect. Dis. 218 (5):739–47. doi:10.1093/infdis/jiy221.
  • Kudo, E., E. Song, L. J. Yockey, T. Rakib, P. W. Wong, R. J. Homer, and A. Iwasaki. 2019. Low ambient humidity impairs barrier function and innate resistance against influenza infection. Proc. Natl. Acad. Sci. U S A 116 (22):10905–10. doi:10.1073/pnas.1902840116.
  • Lednicky, J. A., M. Lauzard, Z. H. Fan, A. Jutla, T. B. Tilly, M. Gangwar, M. Usmani, S. N. Shankar, K. Mohamed, A. Eiguren-Fernandez, et al. 2020. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 100:476–82. doi:10.1016/j.ijid.2020.09.025.
  • Lednicky, J. A., M. Lauzardo, M. M. Alam, M. A. Elbadry, C. J. Stephenson, J. C. Gibson, and J. G. Morris. Jr. 2021. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int. J. Infect. Dis. 108:212–6. doi:10.1016/j.ijid.2021.04.063.
  • Lewis, D. 2022. Why the WHO took two years to say COVID is airborne. Nature 604 (7904):26–31. doi:10.1038/d41586-022-00925-7.
  • Lin, K., C. R. Schulte, and L. C. Marr. 2020. Survival of MS2 and Φ6 viruses in droplets as a function of relative humidity, pH, and salt, protein, and surfactant concentrations. PLoS One. 1512:e0243505. doi:10.1371/journal.pone.0243505.
  • Lin, M, and L. C. Marr. 2020. Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environ. Sci. Technol. 54 (2):1024–32. doi:10.1021/acs.est.9b04959.
  • Lindsley, W. G., F. M. Blachere, B. F. Law, D. H. Beezhold, and J. D. Noti. 2021. Efficacy of face masks, neck gaiters and face shields for reducing the expulsion of simulated cough-generated aerosols. Aerosol Sci. Technol. 55 (4):449–57. doi:10.1080/02786826.2020.1862409.
  • Lu, J., J. Gu, K. Li, C. Xu, W. Su, Z. Lai, D. Zhou, C. Yu, B. Xu, and Z. Yang. 2020. COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. Emerg. Infect. Dis. 26 (7):1628–31. doi:10.3201/eid2607.200764.
  • Luo, B., A. Schaub, I. Glas, L. K. Klein, S. C. David, N. Bluvshtein, K. Violaki, G. Motos, M. Pohl, W. Hugentobler, et al. 2022. Acidity of expiratory aerosols controls the infectivity of airborne influenza virus and SARS-CoV-2. medRxiv preprint doi:10.1101/2022.03.14.22272134.
  • Morawska, L. 2006. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 16 (5):335–47. doi:10.1111/j.1600-0668.2006.00432.x.
  • Morawska, L, and D. K. Milton. 2020. It is time to address airborne transmission of coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 71 (9):2311–3. doi:10.1093/cid/ciaa939.
  • Moriyama, M., W. J. Hugentobler, and A. Iwasaki. 2020. Seasonality of respiratory viral infections. Annu. Rev. Virol. 7 (1):83–101. doi:10.1146/annurev-virology-012420-022445.
  • Morris, D. H., K. C. Yinda, A. Gamble, F. W. Rossine, Q. Huang, T. Bushmaker, R. J. Fischer, M. J. Matson, N. Van Doremalen, P. J. Vikesland, et al. 2021. Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. eLife 10:e65902. doi:10.7554/eLife.65902.
  • Nenes, A. 2021. Personal communication.
  • Niazi, S., K. R. Short, R. Groth, L. Cravigan, K. Spann, Z. Ristovski, and G. R. Johnson. 2021. Humidity-dependent survival of an airborne influenza A virus: Practical implications for controlling airborne viruses. Environ. Sci. Technol. Lett. 8 (5):412–8. doi:10.1021/acs.estlett.1c00253.
  • Noakes, C. J., C. B. Beggs, P. A. Sleigh, and K. G. Kerr. 2006. Modelling the transmission of airborne infections in enclosed spaces. Epidemiol. Infect. 134 (5):1082–91. doi:10.1017/S0950268806005875.
  • Oswin, H. P., A. E. Haddrell, M. Otero-Fernandez, T. A. Cogan, J. F. S. Mann, C. H. Morley, D. J. Hill, A. D. Davidson, A. Finn, R. J. Thomas, et al. 2021. Measuring the stability of virus in aerosols under varying environmental conditions. Aerosol Sci. Technol 55 (12):1315–20. doi:10.1080/02786826.2021.1976718.
  • Oswin, H. P., A. E. Haddrell, M. Otero-Fernandez, J. F. Mann, T. A. Cogan, T. Hilditch, J. Tian, D. Hardy, D. J. Hill, A. Finn, et al. 2022. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc. Natl. Acad. Sci. (USA) 119 (27):e2200109119. doi:10.1073/pnas.2200109119.
  • Peng, Z., A. L. Pineda Rojas, E. Kropff, W. Bahnfleth, G. Buonanno, S. J. Dancer, J. Kurnitski, Y. Li, M. L. C. Loomans, L. C. Marr, et al. 2022. Practical indicators for risk of airborne transmission in shared indoor environments and their application to COVID-19 outbreaks. Environ. Sci. Technol. 56 (2):1125–37. doi:10.1021/acs.est.1c06531. erratum 2022 ibid. 56.
  • Randall, K., E. T. Ewing, L. C. Marr, J. L. Jimenez, and L. Bourouiba. 2021. How did we get here: what are droplets and aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious diseases. Interface Focus. 11 (6):20210049. doi:10.1098/rsfs.2021.0049.
  • Ratnesar-Shumate, R., K. Bohannon, G. Williams, B. Holland, M. Krause, B. Green, D. Freeburger, and P. Dabisch. 2021. Comparison of the performance of aerosol sampling devices for measuring infectious SARS-CoV-2 aerosols. Aerosol Sci. Technol. 55 (8):975–86. doi:10.1080/02786826.2021.1910137.
  • Robinson, M., N. I. Stilianakis, and Y. Drossinos. 2012. Spatial dynamics of airborne infectious diseases. J. Theor. Biol. 297:116–26. doi:10.1016/j.jtbi.2011.12.015.
  • Riley, E. C., G. Murphy, and R. L. Riley. 1978. Airborne spread of measles in a suburban elementary school. Am. J. Epidemiol. 107 (5):421–32. doi:10.1093/oxfordjournals.aje.a112560.
  • Rudnick, S. N, and D. K. Milton. 2003. Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air. 13 (3):237–45. doi:10.1034/j.1600-0668.2003.00189.x.
  • Santarpia, J. L., V. H. Herrera, D. N. Rivera, S. Ratnesar-Shumate, S. P. Reid, P. W. Denton, J. W. S. Martens, Y. Fang, N. Conoan, M. V. Callahan, et al. 2020. The infectious nature of patient-generated SARS-CoV-2 aerosol. medRxiv preprint. doi:10.1101/2020.07.13.20041632.
  • Santarpia, J. L., V. L. Herrera, D. N. Rivera, S. Ratnesar-Shumate, P. St, D. N. Reid, P. W. Ackerman, J. W. S. Denton, Y. Martens, N. Fang, et al. 2021. The size and culturability of patient-generated SARS-CoV-2 aerosol. J. Expo. Sci. Environ. Epidemiol 18:1–6. doi:10.1038/s41370-021-00376-8.
  • Schaffer, F. L., M. E. Soergel, and D. C. Straube. 1976. Survival of airborne influenza virus: Effects of propagating host, relative humidity, and composition of spray fluids. Arch. Virol. 51 (4):263–73. doi:10.1007/BF01317930.
  • Stadnytskyi, V., C. E. Bax, A. Bax, and P. Anfinrud. 2020. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A 117 (22):11875–7. doi:10.1073/pnas.2006874117.
  • Stilianakis, N. I, and Y. Drossinos. 2010. Dynamics of infectious disease transmission by inhalable espiratory droplets. J. R Soc. Interface 7 (50):1355–66. doi:10.1098/rsif.2010.0026.
  • Tellier, R. 2022. COVID-19: the case for aerosol transmission. Interface Focus. 12 (2):20210072. doi:10.1098/rsfs.2021.0072.
  • US CDC update on airborne transmission of SARS-CoV-2 May 2021. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html#anchor_1619805150492.
  • Weber, T. P, and N. I. Stilianakis. 2008. Inactivation of influenza A viruses in the environment and modes of transmission: A critical review. J. Infect. 57 (5):361–73. doi:10.1016/j.jinf.2008.08.013.
  • Williams, R., N. Rankin, T. Smith, D. Galler, and P. Seakins. 1996. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit. Care Med. 24 (11):1920–9. doi:10.1097/00003246-199611000-00025.
  • White House Brief. 2022. “Let’s clear the air on COVID”. https://www.whitehouse.gov/ostp/news-updates/2022/03/23/lets-clear-the-air-on-covid/.
  • WHO admits SARS-CoV-2 airborne transmission in May 2021. The latest update https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted.
  • Yang, W., S. Elankumaran, and L. C. Marr. 2012. Relationship between humidity and Influenza A viability in droplets and implications for influenza’s seasonality. PLoS One. 7 (10):e46789. doi:10.1371/journal.pone.0046789.
  • Zhou, M, and J. Zou. 2021. A dynamical overview of droplets in the transmission of respiratory infectious diseases. Phys Fluids (1994) 33 (3):031301. doi:10.1063/5.0039487.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.