590
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Turbulence impacts upon nvPM primary particle size

, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 893-905 | Received 26 Feb 2022, Accepted 30 Jun 2022, Published online: 05 Aug 2022

References

  • Abrahamson, J. P., J. Zelina, M. G. Andac, and R. L. Vander Wal. 2016. Predictive model development for aviation black carbon mass emissions from alternative and conventional fuels at ground and cruise. Environ. Sci. Technol. 50 (21):12048–55. doi:10.1021/acs.est.6b03749.
  • Alexandrou, I., J. Scheibe, C. J. Kiely, A. J. Papworth, G. A. J. Amaratunga, and B. Schultrich. 1999. Carbon films with a novel sp 2 network. Phys. Rev. B 60 (15):1–15.
  • Attili, A., F. Bisetti, M. E. Mueller, and H. Pitsch. 2014. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. Combust. Flame 161 (7):1849–65. doi:10.1016/j.combustflame.2014.01.008.
  • Baldelli, A., U. Trivanovic, J. C. Corbin, P. Lobo, S. Gagné, J. W. Miller, P. Kirchen, and S. Rogak. 2020. Typical and atypical morphology of non-volatile particles from a diesel and natural gas marine engine. Aerosol Air Qual. Res. 20 (4):730–40. doi:10.4209/aaqr.2020.01.0006.
  • Bisetti, F., A. Attili, and H. Pitsch. 2014. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations. Phil. Trans. R Soc. A 372 (2022):20130324. doi:10.1098/rsta.2013.0324.
  • Bisetti, F., G. Blanquart, M. E. Mueller, and H. Pitsch. 2012. On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159 (1):317–35. doi:10.1016/j.combustflame.2011.05.021.
  • Bisetti, F., G. Blanquart, and H. Pitsch. 2008. Direct numerical simulation of soot formation in turbulent non-premixed flames. Annu. Res. Brief, Stanford Univ. USA. Cent. Turbul. Res. 21:1–13.
  • Brem, B. T., L. Durdina, F. Siegerist, P. Beyerle, K. Bruderer, T. Rindlisbacher, S. Rocci-Denis, M. G. Andac, J. Zelina, O. Penanhoat, et al. 2015. Effects of fuel aromatic content on nonvolatile particulate emissions of an in-production aircraft gas turbine. Environ. Sci. Technol. 49 (22):13149–57. doi:10.1021/acs.est.5b04167.
  • Choo, K. H. 2019. A methodology for the prediction of non-volatile particulate matter from aircraft gas turbine engine. Georgia Tech Theses and Dissertations.
  • Corbin, J. C., T. Schripp, B. E. Anderson, G. J. Smallwood, P. LeClercq, E. C. Crosbie, S. Achterberg, P. D. Whitefield, R. C. Miake-Lye, Z. Yu, et al. 2022. Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: Comparison of measurement techniques for mass, number, and size. Atmos. Meas. Tech. 15 (10):3223–47. doi:10.5194/amt-15-3223-2022.
  • Cuoci, A., A. Frassoldati, D. Patriarca, T. Faravelli, E. Ranzi, and H. Bockhorn. 2010. Soot formation in turbulent non premixed flames. Chem. Eng. Trans. 22:35–40. doi:10.3303/CET1022005.
  • Cuomo, J. J., J. P. Doyle, J. Bruley, and J. C. Liu. 1991. Sputter deposition of dense diamond-like carbon films at low temperature. Appl. Phys. Lett. 58 (5):466–8. doi:10.1063/1.104609.
  • Daniels, H., R. Brydson, B. Rand, and A. Brown. 2007. Investigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). Philos. Mag. 87 (27):4073–92. doi:10.1080/14786430701394041.
  • Dastanpour, R., and S. N. Rogak. 2014. Observations of a correlation between primary particle and aggregate size for soot particles. Aerosol Sci. Technol. 48 (10):1043–9. doi:10.1080/02786826.2014.955565.
  • De Falco, G., I. E. Helou, P. M. de Oliveira, M. Sirignano, R. Yuan, A. D'Anna, and E. Mastorakos. 2021. Soot particle size distribution measurements in a turbulent ethylene swirl flame. Proc. Combust. Inst. 38 (2):2691–9. doi:10.1016/j.proci.2020.06.212.
  • Dworkin, S. B., Q. Zhang, M. J. Thomson, N. A. Slavinskaya, and U. Riedel. 2011. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust. Flame 158 (9):1682–95. doi:10.1016/j.combustflame.2011.01.013.
  • Gaddam, C. K., R. L. Vander Wal, X. Chen, A. Yezerets, and K. Kamasamudram. 2016. Reconciliation of carbon oxidation rates and activation energies based on changing nanostructure. Carbon N. Y 98:545–56. doi:10.1016/j.carbon.2015.11.035.
  • Huang, C.-H., and R. L. Vander Wal. 2013. Effect of soot structure evolution from commercial jet engine burning petroleum based JP-8 and synthetic HRJ and FT fuels. Energy Fuels 27 (8):4946–58. doi:10.1021/ef400576c.
  • Huang, C.-H., and R. L. Vander Wal. 2016. Partial premixing effects upon soot nanostructure. Combust. Flame 168:403–8. doi:10.1016/j.combustflame.2016.01.006.
  • Joo, P. H., B. Gigone, E. A. Griffin, M. Christensen, and Ö. L. Gülder. 2018. Soot primary particle size dependence on combustion pressure in laminar ethylene diffusion flames. Fuel 220:464–70. doi:10.1016/j.fuel.2018.02.025.
  • Kathrotia, T., and U. Riedel. 2020. Predicting the soot emission tendency of real fuels–A relative assessment based on an empirical formula. Fuel 261:116482. doi:10.1016/j.fuel.2019.116482.
  • Köylü, Ü. Ö., C. S. McEnally, D. E. Rosner, and L. D. Pfefferle. 1997. Simultaneous measurements of soot volume fraction and particle size/microstructure in flames using a thermophoretic sampling technique. Combust. Flame 110 (4):494–507. doi:10.1016/S0010-2180(97)00089-8.
  • Kumal, R. R., J. Liu, A. Gharpure, R. L. Vander Wal, J. S. Kinsey, B. Giannelli, J. Stevens, C. Leggett, R. Howard, M. Forde, et al. 2020. Impact of biofuel blends on black carbon emissions from a gas turbine engine. Energy Fuels 34 (4):4958–66. doi:10.1021/acs.energyfuels.0c00094.
  • Lucchesi, M., A. Abdelgadir, A. Attili, and F. Bisetti. 2017. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame. Combust. Flame 178:35–45. doi:10.1016/j.combustflame.2017.01.002.
  • Moore, R. H., M. Shook, A. Beyersdorf, C. Corr, S. Herndon, W. B. Knighton, R. Miake-Lye, K. L. Thornhill, E. L. Winstead, Z. Yu, et al. 2015. Influence of jet fuel composition on aircraft engine emissions: A synthesis of aerosol emissions data from the NASA APEX, AAFEX, and ACCESS missions. Energy Fuels 29 (4):2591–600. doi:10.1021/ef502618w.
  • Olfert, J., and S. Rogak. 2019. Universal relations between soot effective density and primary particle size for common combustion sources. Aerosol Sci. Technol. 53 (5):485–92. doi:10.1080/02786826.2019.1577949.
  • Rigopoulos, S. 2019. Modelling of soot aerosol dynamics in turbulent flow. Flow. Turbulence Combust. 103 (3):565–604. doi:10.1007/s10494-019-00054-8.
  • Santoro, R. J., and J. H. Miller. 1987. Soot particle formation in laminar diffusion flames. Langmuir 3 (2):244–54. doi:10.1021/la00074a018.
  • Schripp, T.,B. E. Anderson,U. Bauder,B. Rauch,J. C. Corbin,G. J. Smallwood,P. Lobo,E. C. Crosbie,M. A. Shook,R. C. Miake-Lye, et al. 2022. Aircraft engine particulate matter emissions from sustainable aviation fuels: Results from ground-based measurements during the NASA/DLR campaign ECLIF2/ND-MAX. Fuel 325:124764.doi:10.1016/j.fuel.2022.124764.
  • Schripp, T., B. Anderson, E. C. Crosbie, R. H. Moore, F. Herrmann, P. Oßwald, C. Wahl, M. Kapernaum, M. Köhler, P. Le Clercq, et al. 2018. Impact of alternative jet fuels on engine exhaust composition during the 2015 ECLIF ground-based measurements campaign. Environ. Sci. Technol. 52 (8):4969–78.
  • Singh, M., C. K. Gaddam, J. P. Abrahamson, and R. L. Vander Wal. 2019. Soot differentiation by laser derivatization. Aerosol Sci. Technol. 53 (2):207–29. doi:10.1080/02786826.2018.1554243.
  • Singh, M., and R. L. Vander Wal. 2020. The role of fuel chemistry in dictating nanostructure evolution of soot toward source identification. Aerosol Sci. Technol. 54 (1):66–78. doi:10.1080/02786826.2019.1675864.
  • Speth, R. L., C. Rojo, R. Malina, and S. R. H. Barrett. 2015. Black carbon emissions reductions from combustion of alternative jet fuels. Atmos. Environ. 105:37–42. doi:10.1016/j.atmosenv.2015.01.040.
  • Teoh, R., M. E. J. Stettler, A. Majumdar, and U. Schumann. 2017. Aircraft black carbon particle number emissions—A new predictive method and uncertainty analysis. 21st ETH-Conference on Combustion Generated Nanoparticles, ETH Zurich, Zurich, Switzerland.
  • Vander Wal, R. L., V. M. Bryg, and M. D. Hays. 2010. Fingerprinting soot (towards source identification): Physical structure and chemical composition. J. Aerosol Sci. 41 (1):108–17. doi:10.1016/j.jaerosci.2009.08.008.
  • Vander Wal, R. L., A. Strzelec, T. J. Toops, C. S. Daw, and C. L. Genzale. 2013. Forensics of soot: C5-related nanostructure as a diagnostic of in-cylinder chemistry. Fuel 113:522–6. doi:10.1016/j.fuel.2013.05.104.
  • Wang, H. 2011. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33 (1):41–67. doi:10.1016/j.proci.2010.09.009.
  • Xuan, Y., and G. Blanquart. 2016. Two-dimensional flow effects on soot formation in laminar premixed flames. Combust. Flame 166:113–24. doi:10.1016/j.combustflame.2016.01.007.
  • Yunardi, Y., E. Munawar, W. Rinaldi, A. Razali, E. Iskandar, and M. Fairweather. 2018. Analysis of turbulence and surface growth models on the estimation of soot level in ethylene non-premixed flames. J. Therm. Sci. 27 (1):78–88. doi:10.1007/s11630-018-0987-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.