1,879
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Estimating mass-absorption cross-section of ambient black carbon aerosols: Theoretical, empirical, and machine learning models

ORCID Icon & ORCID Icon
Pages 980-997 | Received 03 Mar 2022, Accepted 15 Jul 2022, Published online: 06 Sep 2022

References

  • Adachi, K., S. H. Chung, and P. R. Buseck. 2010. Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res. 115 (D15):D15206. doi:10.1029/2009JD012868.
  • Backman, J., A. Virkkula, V. Vakkari, J. P. Beukes, P. G. Van Zyl, M. Josipovic, S. Piketh, P. Tiitta, K. Chiloane, T. Petäjä, et al. 2014. Differences in aerosol absorption Ångström exponents between correction algorithms for a particle soot absorption photometer measured on the South African Highveld. Atmos. Meas. Tech. 7 (12):4285–98. doi:10.5194/amt-7-4285-2014.
  • Bahadur, R., P. S. Praveen, Y. Xu, and V. Ramanathan. 2012. Solar absorption by elemental and brown carbon determined from spectral observations. Proc. Natl. Acad. Sci. USA 109 (43):17366–71. doi:10.1073/pnas.1205910109.
  • Bergstrom, R. W., P. B. Russell, and P. Hignett. 2002. Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX Experiment and implications for the aerosol single scattering albedo. J. Atmos. Sci. 59 (3):567–77. doi:10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO;2.
  • Bohren, C, and D. Huffman. 1983. Absorption and scattering of light by small particles. New York, NY: Wiley-Interscience.
  • Bond, T. C., T. L. Anderson, and D. Campbell. 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol. Sci. Technol. 30 (6):582–600. doi:10.1080/027868299304435.
  • Bond, T. C, and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi:10.1080/02786820500421521.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Bond, T. C., G. Habib, and R. W. Bergstrom. 2006. Limitations in the enhancement of visible light absorption due to mixing state. J. Geophys. Res. 111 (D20):D20211. doi:10.1029/2006JD007315.
  • Caponi, L., P. Formenti, D. Massabó, C. Di Biagio, M. Cazaunau, E. Pangui, S. Chevaillier, G. Landrot, M. O. Andreae, K. Kandler, et al. 2017. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: A simulation chamber study. Atmos. Chem. Phys. 17 (11):7175–91. doi:10.5194/acp-17-7175-2017.
  • Cappa, C. D., K. R. Kolesar, X. Zhang, D. B. Atkinson, M. S. Pekour, R. A. Zaveri, A. Zelenyuk, and Q. Zhang. 2016. Understanding the optical properties of ambient sub- and supermicron particulate matter: Results from the CARES 2010 field study in northern California. Atmos. Chem. Phys. 16 (10):6511–35. doi:10.5194/acp-16-6511-2016.
  • Cappa, C. D., T. B. Onasch, P. Massoli, D. R. Worsnop, T. S. Bates, E. S. Cross, P. Davidovits, J. Hakala, K. L. Hayden, B. T. Jobson, et al. 2012. Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science 337 (6098):1078–81. doi:10.1126/science.1223447.
  • Cappa, C. D., X. Zhang, L. M. Russell, S. Collier, A. K. Y. Lee, C.-L. Chen, R. Betha, S. Chen, J. Liu, D. J. Price, et al. 2019. Light absorption by ambient black and brown carbon and its dependence on black carbon coating state for two California, USA, cities in winter and summer. J. Geophys. Res. Atmos. 124 (3):1550–77. doi:10.1029/2018JD029501.
  • Cazorla, A., R. Bahadur, K. J. Suski, J. F. Cahill, D. Chand, B. Schmid, V. Ramanathan, and K. A. Prather. 2013. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmos. Chem. Phys. 13 (18):9337–50. doi:10.5194/acp-13-9337-2013.
  • Chakrabarty, R. K, and W. R. Heinson. 2018. Scaling laws for light absorption enhancement due to nonrefractory coating of atmospheric black carbon aerosol. Phys. Rev. Lett. 121 (21):218701. doi:10.1103/PhysRevLett.121.218701.
  • Cho, C., S.-W. Kim, M. Lee, S. Lim, W. Fang, Ö. Gustafsson, A. Andersson, R. J. Park, and P. J. Sheridan. 2019. Observation-based estimates of the mass absorption cross-section of black and brown carbon and their contribution to aerosol light absorption in East Asia. Atmos. Environ 212:65–74. doi:10.1016/j.atmosenv.2019.05.024.
  • Collaud Coen, M., E. Weingartner, A. Apituley, D. Ceburnis, R. Fierz-Schmidhauser, H. Flentje, J. S. Henzing, S. G. Jennings, M. Moerman, A. Petzold, et al. 2010. Minimizing light absorption measurement artifacts of the aethalometer: Evaluation of five correction algorithms. Atmos. Meas. Tech. 3 (2):457–74. doi:10.5194/amt-3-457-2010.
  • Conrad, B. M, and M. R. Johnson. 2019. Mass absorption cross-section of flare-generated black carbon: Variability, predictive model, and implications. Carbon N. Y 149:760–71. doi:10.1016/j.carbon.2019.04.086.
  • Corbin, J. C., H. Czech, D. Massabò, F. B. de Mongeot, G. Jakobi, F. Liu, P. Lobo, C. Mennucci, A. A. Mensah, J. Orasche, et al. 2019. Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. Npj Clim. Atmos. Sci. 2 (1):12. doi:10.1038/s41612-019-0069-5.
  • Cortes, C, and V. Vapnik. 1995. Support-vector networks. Mach. Learn. 20 (3):273–97. doi:10.1007/BF00994018.
  • Cross, E. S., T. B. Onasch, A. Ahern, W. Wrobel, J. G. Slowik, J. Olfert, D. A. Lack, P. Massoli, C. D. Cappa, J. P. Schwarz, et al. 2010. Soot particle studies-instrument inter-comparison-project overview. Aerosol Sci. Technol. 44 (8):592–611. doi:10.1080/02786826.2010.482113.
  • Davies, N. W., C. Fox, K. Szpek, M. I. Cotterell, J. W. Taylor, J. D. Allan, P. I. Williams, J. Trembath, J. M. Haywood, and J. M. Langridge. 2019. Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. Atmos. Meas. Tech. 12 (6):3417–34. doi:10.5194/amt-12-3417-2019.
  • Dobbins, R. A, and C. M. Megaridis. 1991. Absorption and scattering of light by polydisperse aggregates. Appl. Opt. 30 (33):4747–54. doi:10.1364/AO.30.004747.
  • Drucker, H., C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. 1997. Support vector regression machines. In Advances in Neural Information Processing Systems155–61. Cambridge, MA (United States): MIT Press.
  • Fierce, L., T. C. Bond, S. E. Bauer, F. Mena, and N. Riemer. 2016. Black carbon absorption at the global scale is affected by particle-scale diversity in composition. Nat. Commun. 7:12361. doi:10.1038/ncomms12361.
  • Fierce, L., T. B. Onasch, C. D. Cappa, C. Mazzoleni, S. China, J. Bhandari, P. Davidovits, D. A. Fischer, T. Helgestad, A. T. Lambe, et al. 2020. Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. Proc. Natl. Acad. Sci. USA 117 (10):5196–203. doi:10.1073/pnas.1919723117.
  • Forestieri, S. D., T. M. Helgestad, A. T. Lambe, L. Renbaum-Wolff, D. A. Lack, P. Massoli, E. S. Cross, M. K. Dubey, C. Mazzoleni, J. S. Olfert, et al. 2018. Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot. Atmos. Chem. Phys. 18 (16):12141–59. doi:10.5194/acp-18-12141-2018.
  • García Fernández, C., S. Picaud, and M. Devel. 2015. Calculations of the mass absorption cross sections for carbonaceous nanoparticles modeling soot. J. Quant. Spectrosc. Radiat. Transf. 164:69–81. doi:10.1016/j.jqsrt.2015.05.011.
  • Gliß, J., A. Mortier, M. Schulz, E. Andrews, Y. Balkanski, S. E. Bauer, A. M. K. Benedictow, H. Bian, R. Checa-Garcia, M. Chin, et al. 2021. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos. Chem. Phys. 21 (1):87–128. doi:10.5194/acp-21-87-2021.
  • Gorham, K. A., S. M. Raffuse, N. P. Hyslop, and W. H. White. 2021. Comparison of recent speciated PM2.5 data from collocated CSN and IMPROVE measurements. Atmos. Environ. 244:117977. doi:10.1016/j.atmosenv.2020.117977.
  • Gyawali, M., W. P. Arnott, R. Zaveri, C. Song, B. Flowers, M. Dubey, A. Setyan, Q. Zhang, S. China, C. Mazzoleni, et al. 2017. Evolution of multispectral aerosol absorption properties in a biogenically-influenced urban environment during the CARES campaign. Atmosphere (Basel) 8 (12):217. doi:10.3390/atmos8110217.
  • He, C., K.-N. Liou, Y. Takano, R. Zhang, M. Levy Zamora, P. Yang, Q. Li, and L. R. Leung. 2015. Variation of the radiative properties during black carbon aging: Theoretical and experimental intercomparison. Atmos. Chem. Phys. 15 (20):11967–80. doi:10.5194/acp-15-11967-2015.
  • Hyslop, N. P, and W. H. White. 2009. Estimating precision using duplicate measurements. J. Air Waste Manag. Assoc. 59 (9):1032–9. doi:10.3155/1047-3289.59.9.1032.
  • Jacobson, M. Z. 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409 (6821):695–7. doi:10.1038/35055518.
  • Jacobson, M. Z. 2000. A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett. 27 (2):217–20. doi:10.1029/1999GL010968.
  • Knox, A., G. J. Evans, J. R. Brook, X. Yao, C.-H. Jeong, K. J. Godri, K. Sabaliauskas, and J. G. Slowik. 2009. Mass absorption cross-section of ambient black carbon aerosol in relation to chemical age. Aerosol Sci. Technol. 43 (6):522–32. doi:10.1080/02786820902777207.
  • Kondo, Y., H. Matsui, N. Moteki, L. Sahu, N. Takegawa, M. Kajino, Y. Zhao, M. J. Cubison, J. L. Jimenez, S. Vay, et al. 2011. Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. J. Geophys. Res. 116 (D8):D08204. doi:10.1029/2010JD015152.
  • Lack, D. A, and C. D. Cappa. 2010. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos. Chem. Phys. 10 (9):4207–20. doi:10.5194/acp-10-4207-2010.
  • Lack, D. A, and J. M. Langridge. 2013. On the attribution of black and brown carbon light absorption using the Ångström exponent. Atmos. Chem. Phys. 13 (20):10535–43. doi:10.5194/acp-13-10535-2013.
  • Lack, D. A., H. Moosmüller, G. R. McMeeking, R. K. Chakrabarty, and D. Baumgardner. 2014. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Anal. Bioanal. Chem. 406 (1):99–122. doi:10.1007/s00216-013-7402-3.
  • Lesins, G., P. Chylek, and U. Lohmann. 2002. A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res. 107 (D10):AAC5-1–AAC5-12. doi:10.1029/2001JD000973.
  • Li, H, and A. A. May. 2020a. An exploratory approach using regression and machine learning in the analysis of mass absorption cross section of black carbon aerosols: Model development and evaluation. Atmosphere (Basel) 11 (11):1185. doi:10.3390/atmos11111185.
  • Li, H, and A. A. May. 2020b. Application of regression and machine learning approaches in the analysis of mass absorption cross section of black carbon aerosols. Zenodo. //zenodo.org/record/3967833.
  • Li, H., G. R. McMeeking, and A. A. May. 2020. Development of a new correction algorithm applicable to any filter-based absorption photometer. Atmos. Meas. Tech. 13 (5):2865–86. doi:10.5194/amt-13-2865-2020.
  • Li, Z., H. Tan, J. Zheng, L. Liu, Y. Qin, N. Wang, F. Li, Y. Li, M. Cai, Y. Ma, et al. 2019. Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China. Atmos. Chem. Phys. 19 (18):11669–85. doi:10.5194/acp-19-11669-2019.
  • Liu, C., J. Li, Y. Yin, B. Zhu, and Q. Feng. 2017. Optical properties of black carbon aggregates with non-absorptive coating. J. Quant. Spectrosc. Radiat. Transf. 187:443–52. doi:10.1016/j.jqsrt.2016.10.023.
  • Liu, F., J. Yon, A. Fuentes, P. Lobo, G. J. Smallwood, and J. C. Corbin. 2020. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 54 (1):33–51. doi:10.1080/02786826.2019.1676878.
  • Liu, S., A. C. Aiken, K. Gorkowski, M. K. Dubey, C. D. Cappa, L. R. Williams, S. C. Herndon, P. Massoli, E. C. Fortner, P. S. Chhabra, et al. 2015. Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat. Commun. 6:8435. doi:10.1038/ncomms9435.
  • May, A. A, and H. Li. 2022. Application of machine learning approaches in the analysis of mass absorption cross-section of black carbon aerosols: Sensitivity analyses and wavelength dependencies. Aerosol Sci. Technol. doi:10.1080/02786826.2022.2114312
  • May, A. A., G. R. McMeeking, T. Lee, J. W. Taylor, J. S. Craven, I. Burling, A. P. Sullivan, S. Akagi, J. L. Collett, M. Flynn, et al. 2014. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements. J. Geophys. Res. Atmos. 119 (20):11826–11849. doi:10.1002/2014JD021848.
  • Mbengue, S., N. Zikova, J. Schwarz, P. Vodička, A. H. Šmejkalová, and I. Holoubek. 2021. Mass absorption cross-section and absorption enhancement from long term black and elemental carbon measurements: A rural background station in Central Europe. Sci. Total Environ. 794:148365. doi:10.1016/j.scitotenv.2021.148365.
  • McDuffie, E. E., S. J. Smith, P. O'Rourke, K. Tibrewal, C. Venkataraman, E. A. Marais, B. Zheng, M. Crippa, M. Brauer, and R. V. Martin. 2020. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): An application of the community emissions data system (CEDS). Earth Syst. Sci. Data. 12 (4):3413–42. doi:10.5194/essd-12-3413-2020.
  • Moosmüller, H., W. P. Arnott, C. F. Rogers, J. C. Chow, C. A. Frazier, L. E. Sherman, and D. L. Dietrich. 1998. Photoacoustic and filter measurements related to aerosol light absorption during the northern front range air quality study (Colorado 1996/1997). J. Geophys. Res. 103 (D21):28149–57. doi:10.1029/98JD02618.
  • Moteki, N., Y. Kondo, and K. Adachi. 2014. Identification by single-particle soot photometer of black carbon particles attached to other particles: Laboratory experiments and ground observations in Tokyo. J. Geophys. Res. Atmos. 119 (2):1031–43. doi:10.1002/2013JD020655.
  • Nordmann, S., W. Birmili, K. Weinhold, K. Müller, G. Spindler, and A. Wiedensohler. 2013. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy. J. Geophys. Res. Atmos. 118 (21):12075–12085. doi:10.1002/2013JD020021.
  • Ogren, J. A., J. Wendell, E. Andrews, and P. J. Sheridan. 2017. Continuous light absorption photometer for long-term studies. Atmos. Meas. Tech. 10 (12):4805–18. doi:10.5194/amt-10-4805-2017.
  • Ohata, S., T. Mori, Y. Kondo, S. Sharma, A. Hyvärinen, E. Andrews, P. Tunved, E. Asmi, J. Backman, H. Servomaa, et al. 2021. Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic. Atmos. Meas. Tech. 14 (10):6723–48. doi:10.5194/amt-14-6723-2021.
  • Petzold, A., J. A. Ogren, M. Fiebig, P. Laj, S.-M. Li, U. Baltensperger, T. Holzer-Popp, S. Kinne, G. Pappalardo, N. Sugimoto, et al. 2013. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 13 (16):8365–79. doi:10.5194/acp-13-8365-2013.
  • Ram, K, and M. M. Sarin. 2009. Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environ. Sci. Technol. 43 (21):8233–9. doi:10.1021/es9011542.
  • Saliba, G., R. Subramanian, R. Saleh, A. T. Ahern, E. M. Lipsky, A. Tasoglou, R. C. Sullivan, J. Bhandari, C. Mazzoleni, and A. L. Robinson. 2016. Optical properties of black carbon in cookstove emissions coated with secondary organic aerosols: Measurements and modeling. Aerosol Sci. Technol. 50 (11):1264–76. doi:10.1080/02786826.2016.1225947.
  • Saturno, J., C. Pöhlker, D. Massabò, J. Brito, S. Carbone, Y. Cheng, X. Chi, F. Ditas, I. Hrab De Angelis, D. Morán-Zuloaga, et al. 2017. Comparison of different aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmos. Meas. Tech. 10 (8):2837–50. doi:10.5194/amt-10-2837-2017.
  • Scarnato, B. V., S. Vahidinia, D. T. Richard, and T. W. Kirchstetter. 2013. Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model. Atmos. Chem. Phys. 13 (10):5089–101. doi:10.5194/acp-13-5089-2013.
  • Schnaiter, M., C. Linke, O. Möhler, K. Naumann, H. Saathoff, R. Wagner, U. Schurath, and B. Wehner. 2005. Absorption amplification of black carbon internally mixed with secondary organic aerosol. J. Geophys. Res. 110 (D19):D19204. doi:10.1029/2005JD006046.
  • Schumacher, R. S., D. A. Hence, S. W. Nesbitt, R. J. Trapp, K. A. Kosiba, J. Wurman, P. Salio, M. Rugna, A. C. Varble, and N. R. Kelly. 2021. Convective-storm environments in subtropical South America from high-frequency soundings during RELAMPAGO-CACTI. Mon. Weather Rev. 149 (5):1439–58. doi:10.1175/MWR-D-20-0293.1.
  • Smola, A. J, and B. Schölkopf. 1998. On a kernel-based method for pattern recognition, regression, approximation, and operator inversion. Algorithmica 22 (1–2):211–31. doi:10.1007/PL00013831.
  • Sorensen, C. M. 2001. Light scattering by fractal aggregates: A review. Aerosol Sci. Technol. 35 (2):648–87. doi:10.1080/02786820117868.
  • Srivastava, P., M. Naja, T. R. Seshadri, H. Joshi, U. C. Dumka, M. M. Gogoi, and S. S. Babu. 2021. Implications of site‐specific mass absorption cross‐section (MAC) to black carbon observations at a high‐altitude site in the Central Himalaya. Asia-Pacific J. Atmos. Sci. 48 (1):83–96. doi:10.1007/s13143-021-00241-6.
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96 (12):2059–77. doi:10.1175/BAMS-D-14-00110.1.
  • Subramanian, R., G. L. Kok, D. Baumgardner, A. Clarke, Y. Shinozuka, T. L. Campos, C. G. Heizer, B. B. Stephens, B. de Foy, P. B. Voss, et al. 2010. Black carbon over Mexico: The effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios. Atmos. Chem. Phys. 10 (1):219–37. doi:10.5194/acp-10-219-2010.
  • Sumlin, B. J., W. R. Heinson, and R. K. Chakrabarty. 2018. Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities. J. Quant. Spectrosc. Radiat. Transf. 205:127–34. doi:10.1016/j.jqsrt.2017.10.012.
  • Varoquaux, G., G. Emmanuelle, O. Vahtras, H. P. R. Valentin, and E. Al. 2015. Scipy lecture notes: One document to learn numerics, science, and data with Python.
  • Wang, Y., Y. Pang, J. Huang, L. Bi, H. Che, X. Zhang, and W. Li. 2021. Constructing shapes and mixing structures of black carbon particles with applications to optical calculations. J. Geophys. Res. Atmos. 126 (10). doi:10.1029/2021JD034620.
  • Wei, X., Y. Zhu, J. Hu, C. Liu, X. Ge, S. Guo, D. Liu, H. Liao, and H. Wang. 2020. Recent progress in impacts of mixing state on optical properties of black carbon aerosol. Curr. Pollution Rep. 6 (4):380–98. doi:10.1007/s40726-020-00158-0.
  • Wu, Y., T. Cheng, D. Liu, J. D. Allan, L. Zheng, and H. Chen. 2018. Light absorption enhancement of black carbon aerosol constrained by particle morphology. Environ. Sci. Technol. 52 (12):6912–9. doi:10.1021/acs.est.8b00636.
  • Xu, X., W. Zhao, X. Qian, S. Wang, B. Fang, Q. Zhang, W. Zhang, D. S. Venables, W. Chen, Y. Huang, et al. 2018. The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo. Atmos. Chem. Phys. 18 (23):16829–44. doi:10.5194/acp-18-16829-2018.
  • Yuan, J., R. L. Modini, M. Zanatta, A. B. Herber, T. Müller, B. Wehner, L. Poulain, T. Tuch, U. Baltensperger, and M. Gysel-Beer. 2021. Variability in the mass absorption cross section of black carbon (BC) aerosols is driven by BC internal mixing state at a central European background site (Melpitz, Germany) in winter. Atmos. Chem. Phys. 21 (2):635–55. doi:10.5194/acp-21-635-2021.
  • Zanatta, M., M. Gysel, N. Bukowiecki, T. Müller, E. Weingartner, H. Areskoug, M. Fiebig, K. E. Yttri, N. Mihalopoulos, G. Kouvarakis, et al. 2016. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmos. Environ 145:346–64. doi:10.1016/j.atmosenv.2016.09.035.
  • Zanatta, M., P. Laj, M. Gysel, U. Baltensperger, S. Vratolis, K. Eleftheriadis, Y. Kondo, P. Dubuisson, V. Winiarek, S. Kazadzis, et al. 2018. Effects of mixing state on optical and radiative properties of black carbon in the European Arctic. Atmos. Chem. Phys. 18 (19):14037–57. doi:10.5194/acp-18-14037-2018.
  • Zaveri, R. A., J. C. Barnard, R. C. Easter, N. Riemer, and M. West. 2010. Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume. J. Geophys. Res. 115 (D17):D17210. doi:10.1029/2009JD013616.
  • Zhang, R., A. F. Khalizov, J. Pagels, D. Zhang, H. Xue, and P. H. McMurry. 2008. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl. Acad. Sci. USA. 105 (30):10291–6. doi:10.1073/pnas.0804860105.
  • Zhang, X., M. Mao, Y. Yin, and B. Wang. 2018. Numerical investigation on absorption enhancement of black carbon aerosols partially coated with nonabsorbing organics. J. Geophys. Res. Atmos. 123 (2):1297–308. doi:10.1002/2017JD027833.
  • Zhang, X., M. Mao, Y. Yin, and B. Wang. 2017. Absorption enhancement of aged black carbon aerosols affected by their microphysics: A numerical investigation. J. Quant. Spectrosc. Radiat. Transf. 202:90–7. doi:10.1016/j.jqsrt.2017.07.025.