467
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of mixing state on water-uptake properties of ammonium sulfate – Organic mixtures

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1009-1021 | Received 28 Mar 2022, Accepted 28 Jul 2022, Published online: 07 Sep 2022

References

  • Abbatt, J. P. D., K. Broekhuizen, and K. P. Pradeep. 2005. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles. Atmos. Environ. 39 (26):4767–78. doi:10.1016/j.atmosenv.2005.04.029.
  • Altaf, M. B., D. D. Dutcher, T. M. Raymond, and M. A. Freedman. 2018. Effect of particle morphology on cloud condensation nuclei activity. ACS Earth Space Chem. 2 (6):634–9. doi:10.1021/acsearthspacechem.7b00146.
  • Barati, F., Q. Yao, and A. A. Asa-Awuku. 2019. Insight into the role of water-soluble organic solvents for the cloud condensation nuclei activation of cholesterol. ACS Earth Space Chem. 3 (9):1697–705. doi:10.1021/acsearthspacechem.9b00161.
  • Bilde, M, and B. Svenningsson. 2004. CCN activation of slightly soluble organics: The importance of small amounts of inorganic salt and particle phase. Tellus B: Chemical and Physical Meteorology 56 (2):128–34. doi:10.3402/tellusb.v56i2.16406.
  • Broekhuizen, K., P. P. Kumar, and J. P. D. Abbatt. 2004. Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species. Geophys. Res. Lett. 31 (1):1–5. doi:10.1029/2003GL018203.
  • Brooks, S. D., M. E. Wise, M. Cushing, and M. A. Tolbert. 2002. Deliquescence behavior of organic/ammonium sulfate aerosol. Geophys. Res. Lett. 29 (19):23–1–5. doi:10.1029/2002GL014733.
  • Cruz, C. N, and S. N. Pandis. 2000. Deliquescence and hygroscopic growth of mixed inorganic − organic atmospheric aerosol. Environ. Sci. Technol. 34 (20):4313–9. doi:10.1021/es9907109.
  • Cruz, C. N, and S. N. Pandis. 1998. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. J. Geophys. Res. 103 (D11):13111–23. doi:10.1029/98JD00979.
  • Dawson, J. N., K. A. Malek, P. N. Razafindrambinina, T. M. Raymond, D. D. Dutcher, A. A. Asa-Awuku, and M. A. Freedman. 2020. Direct comparison of the submicron aerosol hygroscopicity of water-soluble sugars. ACS Earth Space Chem. 4 (12):2215–26. doi:10.1021/acsearthspacechem.0c00159.
  • Freedman, M. A., C. A. Hasenkopf, M. R. Beaver, and M. A. Tolbert. 2009. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate. J. Phys. Chem. A 113 (48):13584–92. doi:10.1021/jp906240y.
  • Hatch, C. D., K. M. Gierlus, J. D. Schuttlefield, and V. H. Grassian. 2008. Water adsorption and cloud condensation nuclei activity of calcite and calcite coated with model humic and fulvic acids. Atmos. Environ. 42 (22):5672–84. doi:10.1016/j.atmosenv.2008.03.005.
  • Hays, M. D., C. D. Geron, K. J. Linna, N. D. Smith, and J. J. Schauer. 2002. Speciation of gas-phase and fine particle emissions from burning of foliar fuels. Environ. Sci. Technol. 36 (11):2281–95. doi:10.1021/es0111683.
  • Haywood, J, and O. Boucher. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 38 (4):513–43. doi:10.1029/1999RG000078.
  • IPCC. 2021. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY: Cambridge University Press.
  • Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, A. S. H. Prevot, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. D. Allan, H. Coe, N. L. Ng, et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326 (5959):1525–9. doi:10.1126/science.1180353.
  • Jing, B., S. Tong, Q. Liu, K. Li, W. Wang, Y. Zhang, and M. Ge. 2016. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate. Atmos. Chem. Phys. 16 (6):4101–18. doi:10.5194/acp-16-4101-2016.
  • Kanakidou, M., J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, et al. 2005. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 5 (4):1053–123. doi:10.5194/acp-5-1053-2005.
  • Kaplan, I. R, and K. Kawamura. 1987. Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 21 (1):105–10. doi:10.1021/es00155a014.
  • Kreidenweis, S. M, and A. Asa-Awuku. 2014. Aerosol hygroscopicity: Particle water content and its role in atmospheric processes. In Treatise on geochemistry, ed. H. D. Holland, and K. K. Turekian, 2nd ed., 331–361. Elsevier. doi:10.1016/B978-0-08-095975-7.00418-6.
  • Lavallard, P., M. Rosenbauer, and T. Gacoin. 1996. Influence of surrounding dielectrics on the spontaneous emission of sulforhodamine B molecules. Phys. Rev. A 54 (6):5450–3. doi:10.1103/PhysRevA.54.5450.
  • Lei, T., A. Zuend, W. G. Wang, Y. H. Zhang, and M. F. Ge. 2014. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols. Atmos. Chem. Phys. 14 (20):11165–83. doi:10.5194/acp-14-11165-2014.
  • Liu, Q., B. Jing, C. Peng, S. Tong, W. Wang, and M. Ge. 2016. Hygroscopicity of internally mixed multi-component aerosol particles of atmospheric relevance. Atmos. Environ. 125:69–77. doi:10.1016/j.atmosenv.2015.11.003.
  • Lohmann, U, and J. Feichter. 2005. Atmospheric chemistry and physics global indirect aerosol effects: A review. Atmos. Chem. Phys. 5 (3):715–37. doi:10.5194/acp-5-715-2005.
  • Marcolli, C., B. Luo, T. Peter, and F. G. Wienhold. 2004. Internal mixing of the organic aerosol by gas phase diffusion of semivolatile organic compounds. Atmos. Chem. Phys. Discuss. 4 (5):5789–806. doi:10.5194/acpd-4-5789-2004.
  • Marynowski, L, and B. R. T. Simoneit. 2022. Saccharides in atmospheric particulate and sedimentary organic matter: Status overview and future perspectives. Chemosphere 288 (Pt 1):132376. doi:10.1016/j.chemosphere.2021.132376.
  • Mikhailov, E. F, and S. S. Vlasenko. 2020. High-humidity tandem differential mobility analyzer for accurate determination of aerosol hygroscopic growth, microstructure, and activity coefficients over a wide range of relative humidity. Atmos. Meas. Tech. 13 (4):2035–56. doi:10.5194/amt-13-2035-2020.
  • Moore, R. H, and A. Nenes. 2009. Scanning flow CCN analysis method for fast measurements of CCN spectra. Aerosol Sci. Technol. 43 (12):1192–207. doi:10.1080/02786820903289780.
  • Nakao, S. 2017. Why would apparent κ linearly change with O/C? Assessing the role of volatility, solubility, and surface activity of organic aerosols. Aerosol Sci. Technol. 51 (12):1377–88. doi:10.1080/02786826.2017.1352082.
  • Nandy, L., Y. Yao, Z. Zheng, and N. Riemer. 2021. Water uptake and optical properties of mixed organic-inorganic particles. Aerosol Sci. Technol. 55 (12):1398–413. doi:10.1080/02786826.2021.1966378.
  • Ott, E. J. E., E. C. Tackman, and M. A. Freedman. 2020. Effects of sucrose on phase transitions of organic/inorganic aerosols. ACS Earth Space Chem. 4 (4):591–601. doi:10.1021/acsearthspacechem.0c00006.
  • Padró, L. T., R. H. Moore, X. Zhang, N. Rastogi, R. J. Weber, and A. Nenes. 2012. Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment. Atmos. Chem. Phys. 12 (21):10239–55. doi:10.5194/acp-12-10239-2012.
  • Pashynska, V., R. Vermeylen, G. Vas, W. Maenhaut, and M. Claeys. 2002. Development of a gas chromatographic/ion trap mass spectrometric metod for the determination of levoglucosan and saccharidic compounds in atmospheric aerosols. Application to urban aerosols. J. Mass Spectrom. 37 (12):1249–57. doi:10.1002/jms.391.
  • Petters, M. D, and S. M. Kreidenweis. 2013. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 3: Including surfactant partitioning. Atmos. Chem. Phys. 13 (2):1081–91. doi:10.5194/acp-13-1081-2013.
  • Petters, M. D, and S. M. Kreidenweis. 2008. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity – Part 2: Including solubility. Atmos. Chem. Phys. 8 (20):6273–9. doi:10.5194/acp-8-6273-2008.
  • Petters, M. D, and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi:10.5194/acp-7-1961-2007.
  • Prenni, A. J., P. J. DeMott, S. M. Kreidenweis, D. E. Sherman, L. M. Russell, and Y. Ming. 2001. The effects of low molecular weight dicarboxylic acids on cloud formation. J. Phys. Chem. A 105 (50):11240–8. doi:10.1021/jp012427d.
  • Prenni, A. J., M. D. Petters, S. M. Kreidenweis, P. J. DeMott, and P. J. Ziemann. 2007. Cloud droplet activation of secondary organic aerosol. J. Geophys. Res. Atmos. 112 (10):1–12. doi:10.1029/2006JD007963.
  • Raymond, T. M, and S. N. Pandis. 2003. Formation of cloud droplets by multicomponent organic particles. J. Geophys. Res. 108 (D15):10–1–10-8. doi:10.1029/2003JD003503.
  • Razafindrambinina, P. N., K. A. Malek, J. N. Dawson, K. DiMonte, T. M. Raymond, D. D. Dutcher, M. A. Freedman, and A. Asa-Awuku. 2022. Hygroscopicity of internally mixed ammonium sulfate and secondary organic aerosol particles formed at low and high relative humidity. Environ. Sci: Atmos. 2 (2):202–14. doi:10.1039/D1EA00069A.
  • Richards, D. S., K. L. Trobaugh, J. Hajek-Herrera, C. L. Price, C. S. Sheldon, J. F. Davies, and R. D. Davis. 2020. Ion-molecule interactions enable unexpected phase transitions in organic-inorganic aerosol. Sci. Adv. 6 (47):eabb5643. doi:10.1126/sciadv.abb5643.
  • Rickards, A. M. J., R. E. H. Miles, J. F. Davies, F. H. Marshall, and J. P. Reid. 2013. Measurements of the sensitivity of aerosol hygroscopicity and the κ parameter to the O/C ratio. J. Phys. Chem. A 117 (51):14120–31. doi:10.1021/jp407991n.
  • Riemer, N., A. P. Ault, M. West, R. L. Craig, and J. H. Curtis. 2019. Aerosol mixing state: measurements, modeling, and impacts. Rev. Geophys. 57 (2):187–249. doi:10.1029/2018RG000615.
  • Rose, D., S. S. Gunthe, E. Mikhailov, G. P. Frank, U. Dusek, M. O. Andreae, and U. Pöschl. 2008. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 8 (5):1153–79. doi:10.5194/acp-8-1153-2008.
  • Rosenørn, T., G. Kiss, and M. Bilde. 2006. Cloud droplet activation of saccharides and levoglucosan particles. Atmos. Environ. 40 (10):1794–802. doi:10.1016/j.atmosenv.2005.11.024.
  • Schill, S. R., D. B. Collins, C. Lee, H. S. Morris, G. A. Novak, K. A. Prather, P. K. Quinn, C. M. Sultana, A. V. Tivanski, K. Zimmermann, et al. 2015. The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol. ACS Cent. Sci. 1 (3):132–41. doi:10.1021/acscentsci.5b00174.
  • Svenningsson, B., J. Rissler, E. Swietlicki, M. Mircea, M. Bilde, M. C. Facchini, S. Decesari, S. Fuzzi, J. Zhou, J. Mønster, et al. 2006. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 6 (7):1937–52. doi:10.5194/acp-6-1937-2006.
  • Tandon, A., Rothfuss, N. E., and Petters, M. D. 2019. The effect of hydrophobic glassy organic material on the cloud condensation nuclei activity of internally mixed particles with different particle morphologies. Atmos. Chem. Phys. 19:3325–39. doi:10.5194/acp-19-3325-2019.
  • Taylor, N. F., D. R. Collins, C. W. Spencer, D. H. Lowenthal, B. Zielinska, V. Samburova, and N. Kumar. 2011. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States. Atmos. Chem. Phys. 11 (23):12085–107. doi:10.5194/acp-11-12085-2011.
  • VanReken, T. M., N. L. Ng, R. C. Flagan, and J. H. Seinfeld. 2005. Cloud condensation nucleus activation properties of biogenic secondary organic aerosol. J. Geophys. Res. 110 (D7):1–9. doi:10.1029/2004JD005465.
  • Veghte, D. P, and M. A. Freedman. 2012. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles. Anal. Chem. 84 (21):9101–8. doi:10.1021/ac3017373.
  • Vu, D., S. Gao, T. Berte, M. Kacarab, Q. Yao, K. Vafai, and A. Asa-Awuku. 2019. External and internal cloud condensation nuclei (CCN) mixtures: Controlled laboratory studies of varying mixing states. Atmos. Meas. Tech. 12 (8):4277–89. doi:10.5194/amt-12-4277-2019.
  • Wallace, B. J., C. L. Price, J. F. Davies, and T. C. Preston. 2021. Multicomponent diffusion in atmospheric aerosol particles. Environ. Sci: Atmos. 1 (1):45–55. doi:10.1039/D0EA00008F.
  • Wex, H., M. D. Petters, C. M. Carrico, E. Hallbauer, A. Massling, G. R. McMeeking, L. Poulain, Z. Wu, S. M. Kreidenweis, and F. Stratmann. 2009. Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part 1 – Evidence from measurements. Atmos. Chem. Phys. 9 (12):3987–97. doi:10.5194/acp-9-3987-2009.
  • Xu, W., K. N. Fossum, J. Ovadnevaite, C. Lin, R. Huang, C. O. Dowd, and D. Ceburnis. 2021. The impact of aerosol size-dependent hygroscopicity and mixing state on the cloud condensation nuclei potential over the Northeast Atlantic. Atmos. Chem. Phys. Discuss. 21 (11):1–31.
  • Xu, W., J. Ovadnevaite, K. N. Fossum, C. Lin, R.-J. Huang, C. O'Dowd, and D. Ceburnis. 2020. Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: Marine and continental air masses. Atmos. Chem. Phys. 20 (6):3777–91. doi:10.5194/acp-20-3777-2020.
  • Yttri, K. E., C. Dye, and G. Kiss. 2007. Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway. Atmos. Chem. Phys. 7 (16):4267–79. doi:10.5194/acp-7-4267-2007.
  • Zardini, A. A., S. Sjogren, C. Marcolli, U. K. Krieger, M. Gysel, E. Weingartner, U. Baltensperger, and T. Peter. 2008. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles. Atmos. Chem. Phys. 8 (18):5589–601. doi:10.5194/acp-8-5589-2008.
  • Zhang, F., Z. Li, Y. Li, Y. Sun, Z. Wang, P. Li, L. Sun, P. Wang, M. Cribb, C. Zhao, et al. 2016. Impacts of organic aerosols and its oxidation level on CCN activity from measurement at a suburban site in China. Atmos. Chem. Phys. 16 (8):5413–25. doi:10.5194/acp-16-5413-2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.