264
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study on the rebound characteristics of oblique collision of ash particles and the influence of ammonium bisulfate

, , , &
Pages 1058-1069 | Received 23 Apr 2022, Accepted 26 Aug 2022, Published online: 14 Sep 2022

References

  • Abd-Elhady, M. S., and M. R. Malayeri. 2013. Asymptotic characteristics of particulate deposit formation in exhaust gas recirculation (EGR) coolers. Appl. Therm. Eng. 60 (1–2):96–104. doi:10.1016/j.applthermaleng.2013.06.038.
  • Akiyama, K., H. Pak, Y. Takubo, T. Tada, Y. Ueki, R. Yoshiie, and I. Naruse. 2011. Ash deposition behavior of upgraded brown coal in pulverized coal combustion boiler. Fuel Process. Technol. 92 (7):1355–61. doi:10.1016/j.fuproc.2011.02.016.
  • Buck, B., Y. Tang, S. Heinrich, N. G. Deen, and J. A. M. Kuipers. 2017. Collision dynamics of wet solids: Rebound and rotation. Powder Technol. 316:218–24. doi:10.1016/j.powtec.2016.12.088.
  • Cameron, J., and K. Goerg-Wood. 1999. Role of thermophoresis in the deposition of fume particles resulting from the combustion of high inorganic containing fuels with reference to kraft black liquor. Fuel Process. Technol. 60 (1):49–68. doi:10.1016/S0378-3820(99)00025-9.
  • Chen, H., J. Jiao, P. Pan, Q. Zhao, and Y. Wang. 2017. Deposit formation of the low-pressure economizer in a coal-fired thermal power plant. Energy Fuels 31 (5):4791–98. doi:10.1021/acs.energyfuels.6b03507.
  • Gibson, L. M., B. Gopalan, S. V. Pisupati, and L. J. Shadle. 2013. Image analysis measurements of particle coefficient of restitution for coal gasification applications. Powder Technol. 247:30–43. doi:10.1016/j.powtec.2013.06.001.
  • Gorham, D., and A. Kharaz. 2000. The measurement of particle rebound characteristics. Powder Technol. 112 (3):193–202. doi:10.1016/S0032-5910(00)00293-X.
  • Kleinhans, U., C. Wieland, F. J. Frandsen, and H. Spliethoff. 2018. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior. Prog. Energy Combust. Sci. 68:65–168. doi:10.1016/j.pecs.2018.02.001.
  • Liang, D. 2014. Experimental research on the effects to flue ash particles characteristics of NH4HSO4 generating during the denitrification process. PhD diss., Shandong University (in Chinese).
  • Liu, G., S. Li, and Q. Yao. 2011. A JKR-based dynamic model for the impact of micro-particle with a flat surface. Powder Technol. 207 (1–3):215–23. doi:10.1016/j.powtec.2010.11.002.
  • Mueller, C., M. Selenius, M. Theis, B. Skrifvars, R. Backman, M. Hupa, and H. Tran. 2005. Deposition behaviour of molten alkali-rich fly ashes—Development of a submodel for CFD applications. Proc. Combust. Inst. 30 (2):2991–98. doi:10.1016/j.proci.2004.08.116.
  • Naruse, I., D. Kamihashira, Y. Miyauchi, Y. Kato, T. Yamashita, and H. Tominaga. 2005. Fundamental ash deposition characteristics in pulverized coal reaction under high temperature conditions. Fuel 84 (4):405–10. doi:10.1016/j.fuel.2004.09.007.
  • Rushdi, A., A. Sharma, and R. Gupta. 2004. An experimental study of the effect of coal blending on ash deposition. Fuel 83 (4–5):495–506. doi:10.1016/j.fuel.2003.08.013.
  • Sommerfeld, M., and N. Huber. 1999. Experimental analysis and modelling of particle-wall collisions. Int. J. Multiphase Flow 25 (6–7):1457–89. doi:10.1016/S0301-9322(99)00047-6.
  • Thoronton, C., and Z. Ning. 1998. A theoretical model for the stick/bounce behavior of adhesive, elastic-plastic spheres. Power Technol. 101:737–58.
  • Tomeczek, J., and K. Wacławiak. 2009. Two-dimensional modelling of deposits formation on platen superheaters in pulverized coal boilers. Fuel 88 (8):1466–71. doi:10.1016/j.fuel.2009.02.023.
  • Troiano, M., T. Santagata, F. Montagnaro, P. Salatino, and R. Solimene. 2017. Impact experiments of char and ash particles relevant to entrained-flow coal gasifiers. Fuel 202:665–74. doi:10.1016/j.fuel.2017.03.056.
  • Troiano, M., R. Solimene, P. Salatino, and F. Montagnaro. 2016. Multiphase flow patterns in entrained-flow slagging gasifiers: Physical modelling of particle–wall impact at near-ambient conditions. Fuel Process. Technol. 141:106–16. doi:10.1016/j.fuproc.2015.06.018.
  • Vuthaluru, H. B., and D. H. French. 2015. Investigations into the air heater ash deposit formation in large scale pulverised coal fired boiler. Fuel 140:27–33. doi:10.1016/j.fuel.2014.09.040.
  • Walker, K., G. Homsy, and F. Geyling. 1979. Thermophoretic Deposition of Small Particles in Laminar Tube Flow. J. Colloid Interface Sci. 69 (1):138–47.
  • Wall, S., W. John, H. Wang, and S. Goren. 1990. Measurements of kinetic energy loss for particles impacting surfaces. Aerosol Sci. Technol. 12 (4):926–46. doi:10.1080/02786829008959404.
  • Weber, R., Y. Poyraz, M. Mancini, and A. Schwabauer. 2021. Biomass fly-ash deposition: Dependence of deposition rate on probe/particle temperature in 115–1200 °C range. Fuel 290:120033. doi:10.1016/j.fuel.2020.120033.
  • Wei, B., H. Tan, X. Wang, R. Ruan, Z. Hu, and Y. Wang. 2018. Investigation on ash deposition characteristics during Zhundong coal combustion. J. Inst. Energy 91 (1):33–42. doi:10.1016/j.joei.2016.11.003.
  • Xie, J., M. Dong, S. Li, Y. Mei, and Y. Shang. 2018. An experimental study of fly ash particle oblique impact with stainless surfaces. J. Aerosol Sci. 123:27–38. doi:10.1016/j.jaerosci.2018.06.001.
  • Yang, X., D. Ingham, L. Ma, M. Troiano, and M. Pourkashanian. 2019. Prediction of particle sticking efficiency for fly ash deposition at high temperatures. Proc. Combust. Inst. 37 (3):2995–3003. doi:10.1016/j.proci.2018.06.038.
  • Yang, X., D. Ingham, L. Ma, H. Zhou, and M. Pourkashanian. 2017. Understanding the ash deposition formation in Zhundong lignite combustion through dynamic CFD modelling analysis. Fuel 194:533–43. doi:10.1016/j.fuel.2017.01.026.
  • Yu, X., B. Gong, Q. Gao, Y. Zhao, C. Tian, and J. Zhang. 2017. Investigation of fireside corrosion at water-cooled wall from a coal-fired power plant in China. Appl. Therm. Eng. 127:1164–71. doi:10.1016/j.applthermaleng.2017.08.053.
  • Zhou, C., L. Zhang, Y. Deng, and S. Ma. 2016. Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction. Environ. Prog. Sustain. Energy 35 (6):1664–72. doi:10.1002/ep.12409.
  • Zhou, H., and S. Hu. 2021. Numerical simulation of ash deposition behavior with a novel erosion model using dynamic mesh. Fuel 286:119482. doi:10.1016/j.fuel.2020.119482.
  • Zhou, H., Y. Yang, K. Dong, H. Liu, Y. Shen, and K. Cen. 2014. Influence of the gas particle flow characteristics of a low-NOx swirl burner on the formation of high temperature corrosion. Fuel 134:595–602. doi:10.1016/j.fuel.2014.06.027.
  • Zhou, H., J. Zhang, and K. Zhang. 2018. Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: Effect of deposition surface temperature. Fuel Process. Technol. 179:359–68. doi:10.1016/j.fuproc.2018.07.030.
  • Zhou, H., B. Zhou, H. Zhang, and L. Li. 2014. Behavior of fouling deposits formed on a probe with different surface temperatures. Energy Fuels 28 (12):7701–11. doi:10.1021/ef502141x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.