235
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development and initial testing of an active low-power, ferroelectric film-based bioaerosol sampler

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1132-1145 | Received 11 May 2022, Accepted 15 Sep 2022, Published online: 10 Oct 2022

References

  • An, H. R., G. Mainelis, and M. Yao. 2004. Evaluation of a high-volume portable bioaerosol sampler in laboratory and field environments. Indoor Air. 14 (6):385–93. doi:10.1111/j.1600-0668.2004.00257.x.
  • Carotenuto, F., T. Georgiadis, B. Gioli, C. Leyronas, C. Morris, M. Nardino, G. Wohlfahrt, and F. Miglietta. 2017. Measurements and modeling of surface–atmosphere exchange of microorganisms in Mediterranean grassland. Atmos. Chem. Phys. 17 (24):14919–36. doi:10.5194/acp-17-14919-2017.
  • Cox, C. S., and C. M. Wathes. 1995. Bioaerosols handbook. Boca Raton, FL: CRC Press.
  • Fröhlich-Nowoisky, J., C. J. Kampf, B. Weber, J. A. Huffman, C. Pöhlker, M. O. Andreae, N. Lang-Yona, S. M. Burrows, S. S. Gunthe, W. Elbert, et al. 2016. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182:346–76. doi:10.1016/j.atmosres.2016.07.018.
  • Ghosh, B., H. Lal, and A. Srivastava. 2015. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ. Int. 85:254–72. doi:10.1016/j.envint.2015.09.018.
  • Goheen, S. C., E. C. Larkin, and M. G. Bissell. 1984. Ozone produced by corona discharge in the presence of water. Int. J. Biometeorol. 28 (2):157–61. doi:10.1007/BF02191728.
  • Gong, X. D., H. Wex, T. Muller, A. Wiedensohler, K. Hohler, K. Kandler, N. Ma, B. Dietel, T. Schiebel, O. Mohler, et al. 2019. Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice-nucleating particles. Atmos. Chem. Phys. 19 (16):10883–900. doi:10.5194/acp-19-10883-2019.
  • Haatainen, S., J. Laitinen, M. Linnainmaa, T. Reponen, and P. Kalliokoski. 2010. The suitability of the IOM foam sampler for bioaerosol sampling in Occupational Environments. J. Occup. Environ. Hyg. 7 (1):1–6. doi:10.1080/15459620903298015.
  • Haig, C. W., W. G. Mackay, J. T. Walker, and C. Williams. 2016. Bioaerosol sampling: Sampling mechanisms, bioefficiency and field studies. J. Hosp. Infect. 93 (3):242–55. doi:10.1016/j.jhin.2016.03.017.
  • Han, T., H. R. An, and G. Mainelis. 2010. Performance of an electrostatic precipitator with superhydrophobic surface when collecting airborne bacteria. Aerosol Sci. Technol. 44 (5):339–48. doi:10.1080/02786821003649352.
  • Han, T., and G. Mainelis. 2008. Design and development of an electrostatic sampler for bioaerosols with high concentration rate. J. Aerosol Sci. 39 (12):1066–78. doi:10.1016/j.jaerosci.2008.07.009.
  • Han, T., Y. Nazarenko, P. J. Lioy, and G. Mainelis. 2011. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols. Indoor Air. 21 (2):110–20. doi:10.1111/j.1600-0668.2010.00685.x.
  • Han, T. T., N. T. Myers, S. Manibusan, and G. Mainelis. 2022. Development and optimization of Stationary Electrostatic Bioaerosol Sampler (SEBS) for viable and culturable airborne microorganisms. J. Aerosol Sci. 162:105951. doi:10.1016/j.jaerosci.2022.105951.
  • Han, T. T., N. M. Thomas, and G. Mainelis. 2017. Design and development of a self-contained personal electrostatic bioaerosol sampler (PEBS) with a wire-to-wire charger. Aerosol Sci. Technol. 51 (8):903–15. doi:10.1080/02786826.2017.1329516.
  • Han, T., M. Wren, K. DuBois, J. Therkorn, and G. Mainelis. 2015. Application of ATP-based bioluminescence for bioaerosol quantification: Effect of sampling method. J. Aerosol Sci. 90:114–23. doi:10.1016/j.jaerosci.2015.08.003.
  • Han, T., H. J. Zhen, D. E. Fennell, and G. Mainelis. 2015. Design and evaluation of the field-deployable electrostatic precipitator with superhydrophobic surface (FDEPSS) with high concentration rate. Aerosol Air Qual. Res. 15 (6):2397–408. doi:10.4209/aaqr.2015.04.0206.
  • Hinds, W. C. 1999. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York, NY: John Wiley & Sons.
  • Kilburg-Basnyat, B., N. Metwali, and P. S. Thorne. 2016. Performance of electrostatic dust collectors (EDCs) for endotoxin assessment in homes: Effect of mailing, placement, heating, and electrostatic charge. J. Occup. Environ. Hyg. 13 (2):85–93. doi:10.1080/15459624.2015.1078468.
  • Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, and P. Switzer. 2001. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Env. Epid. 11 (3):231–52. doi:10.1038/sj.jea.7500165.
  • Li, C. S., and Y. M. Wen. 2003. Control effectiveness of electrostatic precipitation on airborne microorganisms. Aerosol Sci. Technol. 37 (12):933–8. doi:10.1080/02786820300903.
  • Macher, J. M. 1989. Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. Am. Ind. Hyg. Assoc. J. 50 (11):561–8. doi:10.1080/15298668991375164.
  • Mainelis, G. 1999. Collection of airborne microorganisms by electrostatic precipitation. Aerosol Sci. Technol. 30 (2):127–44. doi:10.1080/027868299304732.
  • Mainelis, G., R. L. Gorny, T. Reponen, M. Trunov, S. A. Grinshpun, P. Baron, J. Yadav, and K. Willeke. 2002. Effect of electrical charges and fields on injury and viability of airborne bacteria. Biotechnol. Bioeng. 79 (2):229–41. doi:10.1002/bit.10290.
  • Mainelis, G., K. Willeke, P. Baron, T. Reponen, S. A. Grinshpun, R. L. Gorny, and S. Trakumas. 2001. Electrical charges on airborne microorganisms. J. Aerosol Sci. 32 (9):1087–110. doi:10.1016/S0021-8502(01)00039-8.
  • Mainelis, G. 2020. Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Sci. Technol. 54 (5):496–519. doi:10.1080/02786826.2019.1671950.
  • Manibusan, S., and G. Mainelis. 2018. Investigation of bioaerosol charge levels indoors using the rutgers electrostatic passive sampler (REPS). 2018 International Aerosol Conference, St. Louis, MO.
  • Manibusan, S., and G. Mainelis. 2021. Effect of sampling duration on bioaerosol culturability when using passive sampling devices. AAAR Annual Conference.
  • Matthias-Maser, S., and R. Jaenicke. 1994. Examination of atmospheric bioaerosol particles with radii > 0.2 μm. J. Aerosol Sci. 25 (8):1605–13. doi:10.1016/0021-8502(94)90228-3.
  • Mbareche, H., M. Veillette, G. J. Bilodeau, and C. Duchaine. 2018. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84 (23):e01589-18. doi:10.1128/AEM.01589-18.
  • Mescioglu, E., A. Paytan, B. W. Mitchell, and D. W. Griffin. 2021. Efficiency of bioaerosol samplers: A comparison study. Aerobiologia 37 (3):447–59. doi:10.1007/s10453-020-09686-0.
  • Metaxatos, A., S. Manibusan, and G. Mainelis. 2021. Investigation of sources, diversity, and variability of bacterial aerosols in Athens, Greece: A pilot study. Atmosphere 13 (1):45. doi:10.3390/atmos13010045.
  • Miksch, R. R., P. Gefter, S. Gehlke, H. A. Halpin, J. S. Meschke, B. Smith, and M. Yost. 2009. Relationship between surface electrostatic potential and deposition of airborne bacteria. IEEE Trans. Ind. Appl. 45 (3):1068–73. doi:10.1109/TIA.2009.2018977.
  • Oh, H. J., T. T. Han, and G. Mainelis. 2020. Performance of two different techniques to concentrate samples for bioaerosol quantification. Atmosphere 11 (5):504. doi:10.3390/atmos11050504.
  • Passos, R. G., M. B. Silveira, and J. S. Abrahao. 2021. Exploratory assessment of the occurrence of SARS-CoV-2 in aerosols in hospital facilities and public spaces of a metropolitan center in Brazil. Environ. Res. 195:110808. doi:10.1016/j.envres.2021.110808.
  • Priyamvada, H., K. Kumaragama, A. Chrzan, C. Athukorala, S. Sur, and S. Dhaniyala. 2021. Design and evaluation of a new electrostatic precipitation-based portable low-cost sampler for bioaerosol monitoring. Aerosol Sci. Technol. 55 (1):24–36. doi:10.1080/02786826.2020.1812503.
  • Rufino de Sousa, N., N. Sandstrom, L. Shen, K. Hakansson, R. Vezozzo, K. I. Udekwu, J. Croda, and A. G. Rothfuchs. 2020. A fieldable electrostatic air sampler enabling tuberculosis detection in bioaerosols. Tuberculosis 120:101896. doi:10.1016/j.tube.2019.101896.
  • Samet, J. M., K. Prather, G. Benjamin, S. Lakdawala, J. M. Lowe, A. Reingold, J. Volckens, and L. C. Marr. 2021. Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): What we know. Clin. Infect. Dis. 73 (10):1924–6. doi:10.1093/cid/ciab039.
  • Seshadri, S., T. Han, V. Krumins, D. E. Fennell, and G. Mainelis. 2009. Application of ATP bioluminescence method to characterize performance of bioaerosol sampling devices. J. Aerosol Sci. 40 (2):113–21. doi:10.1016/j.jaerosci.2008.10.002.
  • Shen, F. X., W. Kai, and M. S. Yao. 2013. Negatively and positively charged bacterial aerosol concentration and diversity in natural environments. Chin. Sci. Bull. 58 (26):3169–76. doi:10.1007/s11434-013-5852-9.
  • Soo, J. C., K. Monaghan, T. Lee, M. Kashon, and M. Harper. 2016. Air sampling filtration media: Collection efficiency for respirable size-selective sampling. Aerosol Sci. Technol. 50 (1):76–87. doi:10.1080/02786826.2015.1128525.
  • Therkorn, J., N. Thomas, L. Calderon, J. Scheinbeim, and G. Mainelis. 2017. Design and development of a passive bioaerosol sampler using polarized ferroelectric polymer film. J. Aerosol Sci. 105:128–44. doi:10.1016/j.jaerosci.2016.12.002.
  • Therkorn, J., N. Thomas, J. Scheinbeim, and G. Mainelis. 2017. Field performance of a novel passive bioaerosol sampler using polarized ferroelectric polymer films. Aerosol Sci. Technol. 51 (7):787–800. doi:10.1080/02786826.2017.1316830.
  • van Doremalen, N., T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, et al. 2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl. J. Med. 382 (16):1564–7. doi:10.1056/NEJMc2004973.
  • Yao, M. S., and G. Mainelis. 2006. Utilization of natural electrical charges on airborne microorganisms for their collection by electrostatic means. J. Aerosol Sci. 37 (4):513–27. doi:10.1016/j.jaerosci.2005.05.006.
  • Zhen, H., T. Han, D. E. Fennell, and G. Mainelis. 2013. Release of free DNA by membrane-impaired bacterial aerosols due to aerosolization and air sampling. Appl. Environ. Microbiol. 79 (24):7780–9. doi:10.1128/AEM.02859-13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.