264
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Accurate nanoparticle size determination using electrical mobility measurements in the step and scan modes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1096-1113 | Received 16 Jun 2022, Accepted 14 Sep 2022, Published online: 12 Oct 2022

References

  • Choi, S., C. L. Myung, and S. Park. 2014. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: part 2. Int. J. Automot. Technol. 15 (2):219–27. doi: 10.1007/s12239-014-0023-9.
  • DerSimonian, R., and N. Laird. 1986. Meta-analysis in clinical trials. Controlled Clin. Trials 7 (3):177–88. doi: 10.1016/0197-2456(86)90046-2.
  • Dixson, R., R. Koning, V. W. Tsai, J. Fu, and T. V. Vorburger. 1999. Nanometer-scale dimensional metrology with the NIST calibrated atomic force microscope. Microsc. Microanal. 5 (Suppl 2):958–9. doi: 10.1017/S1431927600018110.
  • Duelge, K. J., J. Parot, V. A. Hackley, and M. R. Zachariah. 2020. Quantifying protein aggregation kinetics using electrospray differential mobility analysis. J. Pharm. Biomed. Anal. 177:112845. doi: 10.1016/j.jpba.2019.112845.
  • Elahi, N., M. Kamali, and M. H. Baghersad. 2018. Recent biomedical applications of gold nanoparticles: A review. Talanta 184:537–56. doi: 10.1016/j.talanta.2018.02.088.
  • Gibson, E. R., P. K. Hudson, and V. H. Grassian. 2006. Aerosol chemistry and climate: Laboratory studies of the carbonate component of mineral dust and its reaction products. Geophys. Res. Lett. 33 (13):L13811. doi: 10.1029/2006GL026386.
  • Guha, S., M. Li, M. J. Tarlov, and M. R. Zachariah. 2012. Electrospray-differential mobility analysis of bionanoparticles. Trends Biotechnol. 30 (5):291–300. doi: 10.1016/j.tibtech.2012.02.003.
  • Higgins, J. P. T., S. G. Thompson, and D. J. Spiegelhalter. 2009. A re-evaluation of random-effects meta-analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 172 (1):137–59. doi: 10.1111/j.1467-985X.2008.00552.x.
  • Kim, J. H., G. W. Mulholland, S. R. Kukuck, and D. Y. H. Pui. 2005. Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol. 110 (1):31–54. doi: 10.6028/jres.110.005.
  • Knutson, E. O., and K. T. Whitby. 1975. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 6 (6):443–51. doi: 10.1016/0021-8502(75)90060-9.
  • Lamberg, H., O. Sippula, J. Joutsensaari, M. Ihalainen, J. Tissari, A. Lahde, and J. Jokiniemi. 2018. Analysis of high-temperature oxidation of wood combustion particles using tandem-DMA technique. Combust. Flame 191:76–85. doi: 10.1016/j.combustflame.2017.12.027.
  • Li, L., H. S. Chahl, and R. Gopalakrishnan. 2020. Comparison of the predictions of Langevin Dynamics-based diffusion charging collision kernel models with canonical experiments. J. Aerosol Sci. 140:105481. <Go to ISI>://WOS:000505002500003. doi: 10.1016/j.jaerosci.2019.105481.
  • Mai, H. J., and R. C. Flagan. 2018. Scanning DMA data analysis I. Classification transfer function. Aerosol Sci. Technol. 52 (12):1382–99. doi: 10.1080/02786826.2018.1528005.
  • Mai, H. J., W. M. Kong, J. H. Seinfeld, and R. C. Flagan. 2018. Scanning DMA data analysis II. Integrated DMA-CPC instrument response and data inversion. Aerosol Sci. Technol. 52 (12):1400–14. doi: 10.1080/02786826.2018.1528006.
  • Mulholland, G. W., N. P. Bryner, and C. Croarkin. 1999. Measurement of the 100 nm NIST SRM 1963 by differential mobility analysis. Aerosol Sci. Technol. 31 (1):39–55. doi: 10.1080/027868299304345.
  • Mulholland, G. W., M. K. Donnelly, C. R. Hagwood, S. R. Kukuck, V. A. Hackley, and D. Y. H. Pui. 2006. Measurement of 100 nm and 60 nm particle standards by differential mobility analysis. J. Res. Natl. Inst. Stand. Technol. 111 (4):257–312. doi: 10.6028/jres.111.022.
  • Mulholland, G. W., A. W. Hartman, G. G. Hembree, E. Marx, and T. R. Lettieri. 1985. Development of a one-micrometer-diameter particle-size standard reference material. J. Res. Natl. Bur. Stand. (1977) 90 (1):3–26. doi: 10.6028/jres.090.001.
  • Particle Technology Technical Notes and Reference Guide – Strategies and Procedures for Bead Optimization. 2018. Waltham, MA, USA: ThermoFisher Scientific.
  • Satterthwaite, F. E. 1946. An approximate distribution of estimates of variance components. Biometrics Bull. 2 (6):110–14. doi: 10.2307/3002019.
  • Smith, J. N., K. C. Barsanti, H. R. Friedli, M. Ehn, M. Kulmala, D. R. Collins, J. H. Scheckman, B. J. Williams, and P. H. McMurry. 2010. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl. Acad. Sci. USA 107 (15):6634–9. doi: 10.1073/pnas.0912127107.
  • Takahata, K., H. Sakurai, and K. Ehara. 2020. Accurate determination of mass and diameter of monodisperse particles by the electro-gravitational aerosol balance: Correction for the work function imbalance between the electrode surfaces. Aerosol Sci. Technol. 54 (12):1386–98. doi: 10.1080/02786826.2020.1787324.
  • Tokonami, S., and E. O. Knutson. 2000. The scan time effect on the particle size distribution measurement in the scanning mobility particle sizer system. Aerosol Sci. Technol. 32 (3):249–52. doi: 10.1080/027868200303786.
  • Tsai, D. H., F. W. DelRio, A. M. Keene, K. M. Tyner, R. I. MacCuspie, T. J. Cho, M. R. Zachariah, and V. A. Hackley. 2011. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27 (6):2464–77. doi: 10.1021/la104124d.
  • Wang, S. C., and R. C. Flagan. 1990. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13 (2):230–40. doi: 10.1080/02786829008959441.
  • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19 (3):387–9. doi: 10.1016/0021-8502(88)90278-9.
  • Wiedensohler, A., A. Wiesner, K. Weinhold, W. Birmili, M. Hermann, M. Merkel, T. Muller, S. Pfeifer, A. Schmidt, T. Tuch, et al. 2018. Mobility particle size spectrometers: Calibration procedures and measurement uncertainties. Aerosol Sci. Technol. 52 (2):146–64. <Go to ISI>://WOS:000427369900003. doi: 10.1080/02786826.2017.1387229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.