262
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of reusable cloth mask with nanoparticle filtration efficiency greater than 95%

, , , , & ORCID Icon
Pages 1075-1095 | Received 06 Jan 2022, Accepted 28 Aug 2022, Published online: 18 Oct 2022

References

  • Alekseeva, L. V. 2007. Theoretical aspects of predicting the electrostatic properties of textile materials. Fibre Chem. 39 (3):225–6. doi:10.1007/s10692-007-0047-2.
  • Aragaw, T. A. 2020. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Mar. Pollut. Bull. 159:111517. doi:10.1016/j.marpolbul.2020.111517.
  • ASTM International. 2010. Test method for determining the initial efficiency of materials used in medical face masks to penetration by particulates using latex spheres. ASTM International. http://www.astm.org/cgi-bin/resolver.cgi?F2299F2299M-03R17.
  • ASTM International. 2021. Specification for performance of materials used in medical face masks. ASTM International. http://www.astm.org/cgi-bin/resolver.cgi?F2100-19.
  • Bagheri, M. H., I. Khalaji, A. Azizi, R. T. Loibl, N. Basualdo, S. Manzo, M. L. Gorrepati, S. Mehendale, C. Mohr, and S. N. Schiffres. 2021. Filtration efficiency, breathability, and reusability of improvised materials for face masks. Aerosol Sci. Technol. 55 (7):817–27. doi:10.1080/02786826.2021.1898537.
  • Bai, Y., L. Yao, T. Wei, F. Tian, D.-Y. Jin, L. Chen, and M. Wang. 2020. Presumed asymptomatic carrier transmission of COVID-19. JAMA 323 (14):1406. doi:10.1001/jama.2020.2565.
  • Bake, B., P. Larsson, G. Ljungkvist, E. Ljungström, and A.-C. Olin. 2019. Exhaled particles and small airways. Respir. Res. 20 (1):8. doi:10.1186/s12931-019-0970-9.
  • Bałazy, A., M. Toivola, A. Adhikari, S. K. Sivasubramani, T. Reponen, and S. A. Grinshpun. 2006. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Am. J. Infect. Control. 34 (2):51–7. doi: 10.1016/j.ajic.2005.08.018.
  • Bhattacharjee, S., P. Bahl, C. de Silva, C. Doolan, A. A. Chughtai, D. Heslop, and C. R. MacIntyre. 2021. Experimental evidence for the optimal design of a high-performing cloth mask. ACS Biomater. Sci. Eng. 7 (6):2791–802. doi:10.1021/acsbiomaterials.1c00368.
  • Bradow, J. M., and G. H. Davidonis. 2000. Quantitation of fiber quality and the cotton production-processing interface: a physiologist’s perspective. J. Cotton Sci. 4 (1):31.
  • Brown, R.C., and D. Wake. 1991. Air filtration by interception—Theory and experiment. J. Aerosol Sci. 22 (2): 181–86. doi:10.1016/0021-8502(91)90026-E.
  • Cappa, C. D., W. D. Ristenpart, S. Barreda, N. M. Bouvier, E. Levintal, A. S. Wexler, and S. A. Roman; The San Francisco Opera Costume Department. 2022. A highly efficient cloth facemask design. Aerosol Sci. Technol. 56 (1):12–28. doi:10.1080/02786826.2021.1962795.
  • Centers for Disease Control and Prevention (CDC). 1998. Laboratory performance evaluation of N95 filtering facepiece respirators. MMWR. Morbidity and Mortality Weekly Report 47 (48): 1045–9.
  • Chaudhuri, S., S. Basu, P. Kabi, V. R. Unni, and A. Saha. 2020. Modeling the role of respiratory droplets in Covid-19 type pandemics. Phys. Fluids (1994) 32 (6):063309. doi:10.1063/5.0015984.
  • Chung, H. Y. 2008. Book review, electrospinning of micro-and nanofibers: Fundamentals in separation and filtration processes. London, England: SAGE Publications Sage UK.
  • Colbeck, I., and M. Lazaridis. 2014. Aerosol science: Technology and applications. 1st ed. New York: John Wiley & Sons.
  • Cui, J., F. Li, and Z.-L. Shi. 2019. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17 (3):181–92. doi:10.1038/s41579-018-0118-9
  • Curtius, J., M. Granzin, and J. Schrod. 2021. Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. Aerosol Sci. Technol. 55 (5):586–99. doi:10.1080/02786826.2021.1877257.
  • Davies, A., K.-A. Thompson, K. Giri, G. Kafatos, J. Walker, and A. Bennett. 2013. Testing the efficacy of homemade masks: Would they protect in an influenza pandemic? Disaster Med. Public Health Prep. 7 (4):413–8. doi:10.1017/dmp.2013.43.
  • Dbouk, T., and D. Drikakis. 2020a. On coughing and airborne droplet transmission to humans. Phys. Fluids (1994) 32 (5):053310. doi:10.1063/5.0011960.
  • Dbouk, T., and D. Drikakis. 2020b. On respiratory droplets and face masks. Phys. Fluids (1994) 32 (6):063303. doi:10.1063/5.0015044.
  • Drewnick, F., J. Pikmann, F. Fachinger, L. Moormann, F. Sprang, and S. Borrmann. 2021. Aerosol filtration efficiency of household materials for homemade face masks: Influence of material properties, particle size, particle electrical charge, face velocity, and leaks. Aerosol Sci. Technol. 55 (1):63–79. doi:10.1080/02786826.2020.1817846.
  • Emi, H., K. Okuyama, and N. Yoshioka. 1973. Prediction of collection efficiency of aerosols by high-porosity fibrous filter. J. Chem. Eng. Japan. 6 (4):349–54. doi:10.1252/jcej.6.349.
  • Gralton, J., E. Tovey, M.-L. McLaws, and W. D. Rawlinson. 2011. The role of particle size in aerosolised pathogen transmission: A review. J. Infect. 62 (1):1–13. doi:10.1016/j.jinf.2010.11.010.
  • Grishanov, S. 2011. Structure and properties of textile materials. In Handbook of textile and industrial dyeing: Principles, processes and types of dyes, 28–63. Amsterdam: Elsevier Inc.
  • Hao, W., G. Xu, and Y. Wang. 2021. Factors influencing the filtration performance of homemade face masks. J. Occup. Environ. Hyg. 18 (3):128–38. doi:10.1080/15459624.2020.1868482.
  • Hinds, W. C. 1998. Aerosol technology: Properties, behavior, and measurements of airborne particles. 2nd ed. New York: John Wiley & Sons, Inc.
  • Hosseini, S. A., and H. V. Tafreshi. 2011. On the importance of fibers’ cross-sectional shape for air filters operating in the slip flow regime. Powder Technol. 212 (3):425–31. doi:10.1016/j.powtec.2011.06.025.
  • Huang, S.-H., C.-W. Chen, Y.-M. Kuo, C.-Y. Lai, R. McKay, and C.-C. Chen. 2013. Factors affecting filter penetration and quality factor of particulate respirators. Aerosol Air Qual. Res. 13 (1):162–71. doi:10.4209/aaqr.2012.07.0179.
  • Joo, T., M. Takeuchi, F. Liu, M. P. Rivera, J. Barr, E. S. Blum, E. Parker, J. H. Tipton, J. Varnedoe, B. Dutta, et al. 2021. Evaluation of particle filtration efficiency of commercially available materials for homemade face mask usage. Aerosol Sci. Technol. 55 (8):930–42. doi:10.1080/02786826.2021.1905149.
  • Kellogg, W. H., and G. MacMillan. 1920. An experimental study of the efficacy of gauze face masks. Am. J. Public Health (N Y) 10 (1):34–42.
  • Konda, A., A. Prakash, G. A. Moss, M. Schmoldt, G. D. Grant, and S. Guha. 2020. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano 14 (5):6339–47. doi:10.1021/acsnano.0c03252.
  • Kowalski, W., W. Bahnfleth, and T. Whittam. 1999. Filtration of airborne microorganisms: Modeling and prediction. ASHRAE Trans. 105:4–17.
  • Krishan, B., D. Gupta, G. Vadlamudi, S. Sharma, D. Chakravortty, and S. Basu. 2021. Efficacy of homemade face masks against human coughs: Insights on penetration, atomization, and aerosolization of cough droplets. Phys. Fluids (1994) 33 (9):093309. doi:10.1063/5.0061007.
  • Kulkarni, P., P. A. Baron, and K. Willeke. 2011. Aerosol measurement: Principles, techniques and applications. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc.
  • Lee, K., and B. Liu. 1982. Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1 (2): 147–61. doi:10.1080/02786828208958584.
  • Lee, S., and S. K. Obendorf. 2005. Statistical model of pesticide penetration through woven work clothing fabrics. Arch. Environ. Contam. Toxicol. 49 (2):266–73. doi:10.1007/s00244-004-0127-8.
  • Leonas, K. K., and D. Hall. 2003. The relationship of fabric properties and bacterial filtration efficiency for selected surgical face masks. J. Text. Appa. Technol. Manag. 3 (2):9.
  • Leung, N. H. L., D. K. W. Chu, E. Y. C. Shiu, K.-H. Chan, J. J. McDevitt, B. J. P. Hau, H.-L. Yen, Y. Li, D. K. M. Ip, J. S. M. Peiris, et al. 2020. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 26 (5):676–80. doi:10.1038/s41591-020-0843-2.
  • Lindsley, W. G., F. M. Blachere, D. H. Beezhold, B. F. Law, R. C. Derk, J. M. Hettick, K. Woodfork, W. T. Goldsmith, J. R. Harris, M. G. Duling, et al. 2021. A comparison of performance metrics for cloth masks as source control devices for simulated cough and exhalation aerosols. Aerosol Sci. Technol. 55 (10):1125–42.doi:10.1101/2021.02.16.21251850.
  • Liu, Y., Z. Ning, Y. Chen, M. Guo, Y. Liu, N. K. Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl, et al. 2020. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582 (7813):557–60. doi:10.1038/s41586-020-2271-3.
  • Lustig, S. R., J. J. H. Biswakarma, D. Rana, S. H. Tilford, W. Hu, M. Su, and M. S. Rosenblatt. 2020. Effectiveness of common fabrics to block aqueous aerosols of virus-like nanoparticles. ACS Nano 14 (6):7651–8. doi:10.1021/acsnano.0c03972.
  • Mainelis, G., K. Willeke, P. Baron, S. Grinshpun, and T. Reponen. 2002. Induction charging and electrostatic classification of micrometer-size particles for investigating the electrobiological properties of airborne microorganisms. Aerosol Sci. Technol. 36 (4):479–91. doi:10.1080/027868202753571304.
  • Martin, S. B., and E. S. Moyer. 2000. Electrostatic respirator filter media: Filter efficiency and most penetrating particle size effects. Appl. Occup. Environ. Hyg. 15 (8):609–17. doi:10.1080/10473220050075617.
  • McCullough, N., L. Brosseau, and D. Vesley. 1997. Collection of three bacterial aerosols by respirator and surgical mask filters under varying conditions of flow and relative humidity. Annals of Occupational Hygiene 41 (6):677–90. doi:10.1016/S0003-4878(97)00022-7.
  • Milton, D. K., M. P. Fabian, B. J. Cowling, M. L. Grantham, and J. J. McDevitt. 2013. Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLoS Pathogens 9 (3): e1003205. doi:10.1371/journal.ppat.1003205.
  • Morawska, L., G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40 (3):256–69. doi:10.1016/j.jaerosci.2008.11.002.
  • Neupane, B. B., S. Mainali, A. Sharma, and B. Giri. 2019. Optical microscopic study of surface morphology and filtering efficiency of face masks. PeerJ 7 (June 26):e7142. doi:10.7717/peerj.7142.
  • Pan, J., C. Harb, W. Leng, and L. C. Marr. 2021. Inward and outward effectiveness of cloth masks, a surgical mask, and a face shield. Aerosol Sci. Technol. 55 (6):718–33. doi:10.1080/02786826.2021.1890687.
  • Parienta, D., L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski. 2011. Theoretical analysis of the motion and evaporation of exhaled respiratory droplets of mixed composition. J. Aerosol Sci. 42 (1):1–10. doi:10.1016/j.jaerosci.2010.10.005.
  • Payen, J., P. Vroman, M. Lewandowski, A. Perwuelz, S. Callé-Chazelet, and D. Thomas. 2012. Influence of fiber diameter, fiber combinations and solid volume fraction on air filtration properties in nonwovens. Text. Res. J. 82 (19):1948–59. doi:10.1177/0040517512449066.
  • Perić, R., and M. Perić. 2020. Analytical and numerical investigation of the airflow in face masks used for protection against COVID-19 virus – Implications for mask design and usage. J. Appl. Fluid Mech. 13 (6):1911–23. doi:10.47176/jafm.13.06.31812.
  • Podgórski, A., A. Bałazy, and L. Gradoń. 2006. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 61 (20):6804–15. doi:10.1016/j.ces.2006.07.022.
  • Pushpawela, B., S. Amanatidis, Y. Huang, and R. C. Flagan. 2022. Variability of the penetration of particles through facemasks. Aerosol Sci. Technol. 56 (2):186–203. doi:10.1080/02786826.2021.2003291.
  • Ragab, A., A. Fouda, H. El-Deeb, and H. Abou-Taleb. 2017. Determination of pore size, porosity and pore size distribution of woven structures by image analysis techniques. J. Textile Sci. Eng. 7 (5). doi:10.4172/2165-8064.1000314.
  • Rengasamy, S., B. Eimer, and R. E. Shaffer. 2010. Simple respiratory protection—Evaluation of the filtration performance of cloth masks and common fabric materials against 20–1000 Nm size particles. Ann. Occup. Hyg. 54 (7):789–98. doi:10.1093/annhyg/meq044.
  • Reutman, S. R., T. Reponen, M. Yermakov, and S. A. Grinshpun. 2021. Homemade facemasks: Particle filtration, breathability, fit, and other performance characteristics. J. Occup. Environ. Hyg. 18 (7):334–44. doi:10.1080/15459624.2021.1925124.
  • Richardson, A. W., J. P. Eshbaugh, K. C. Hofacre, and P. D. Gardner. 2006. Respirator filter efficiency testing against particulate and biological aerosols under moderate to high flow rates. Scientific and Technical Aerospace Reports 44 (26).
  • Romay, F. J., B. Y. H. Liu, and S.-J. Chae. 1998. Experimental study of electrostatic capture mechanisms in commercial electret filters. Aerosol Sci. Technol. 28 (3):224–34. doi:10.1080/02786829808965523.
  • Rothamer, D. A., S. Sanders, D. Reindl, and T. H. Bertram. 2021. Strategies to minimize SARS-CoV-2 transmission in classroom settings: Combined impacts of ventilation and mask effective filtration efficiency. Sci. Technol. Built Environ. 27 (9):1181–203. doi:10.1080/23744731.2021.1944665.
  • Schiefter, H., D. Taft, and J. Porter. 1936. Effect of number of warp and filling yarns per inch and some other elements of construction on the properties of cloth. J. Res. Natl. Bur. Stan. 16 (2):139–47. doi:10.6028/jres.016.004.
  • Shakya, K. M., A. Noyes, R. Kallin, and R. E. Peltier. 2017. Evaluating the efficacy of cloth facemasks in reducing particulate matter exposure. J. Expo. Sci. Environ. Epidemiol. 27 (3):352–7. doi:10.1038/jes.2016.42.
  • Smith, J. D., C. C. MacDougall, J. Johnstone, R. A. Copes, B. Schwartz, and G. E. Garber. 2016. Effectiveness of N95 respirators versus surgical masks in protecting health care workers from acute respiratory infection: A systematic review and meta-analysis. Canadian Med. Assoc. J. 188 (8):567–74. doi:10.1503/cmaj.150835.
  • Stechkina, I., A. Kirsch, and N. Fuchs. 1969. Studies on Fibrous Aerosol Filters-IV Calculation of Aerosol Deposition in Model Filters In the Range of Maximum Penetration. Ann. Occup. Hyg 12 (1): 1–8. doi:10.1093/annhyg/12.1.1.
  • Stechkina, I., and N. Fuchs. 1966. Studies on fibrous aerosol filters-I. Calculation of diffusional deposition of aerosols in fibrous filters. Ann. Occup. Hyg. 9 (2):59–64. doi:10.1093/annhyg/9.2.59.
  • Tcharkhtchi, A., N. Abbasnezhad, M. Zarbini Seydani, N. Zirak, S. Farzaneh, and M. Shirinbayan. 2021. An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioact. Mater. 6 (1):106–22. doi:10.1016/j.bioactmat.2020.08.002.
  • van Doremalen, N., T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, et al. 2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl. J. Med. 382 (16):1564–7. doi:10.1056/NEJMc2004973.
  • Vincent, J. H. 2007. Aerosol sampling: Science, standards, instrumentation and applications. Chichester: John Wiley & Sons.
  • Wagner, J., T. L. Sparks, S. Miller, W. Chen, J. M. Macher, and J. M. Waldman. 2021. Modeling the impacts of physical distancing and other exposure determinants on aerosol transmission. J. Occup. Environ. Hyg. 18 (1011):495–509. doi:10.1080/15459624.2021.1963445.
  • Wang, J., S. C. Kim, and D. Y. H. Pui. 2008a. Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. J. Aerosol Sci. 39 (4):323–34. doi:10.1016/j.jaerosci.2007.12.003.
  • Wang, J., S. C. Kim, and D. Y. H. Pui. 2008b. Figure of merit of composite filters with micrometer and nanometer fibers. Aerosol Sci. Technol. 42 (9):722–8. doi:10.1080/02786820802249133.
  • World Health Organization. 2020. Health emergencies preparedness and response team. In Advice on the Use of Masks in the Context of COVID-19: Interim Guidance, 5 June 2020, WHO.
  • Xiao, X, and L. Qian. 2000. Investigation of Humidity-Dependent Capillary Force. Langmuir 16 (21):8153–8. doi:10.1021/la000770o.
  • Xie, M., and Q. Chen. 2020. Insight into 2019 novel coronavirus—An updated interim review and lessons from SARS-CoV and MERS-CoV. Int. J. Infect. Dis. 94 (May):119–24. doi:10.1016/j.ijid.2020.03.071.
  • Yan, J., M. Grantham, J. Pantelic, S. Ehrman, and D. K. Milton. 2017. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc. Natl. Acad. Sci. 115 (5):1081–86. doi:10.1073/pnas.1716561115.
  • Yao, B., Y. Wang, X. Ye, F. Zhang, and Y. Peng. 2019. Impact of structural features on dynamic breathing resistance of healthcare face mask. Sci. Total Environ. 689 (November):743–53. doi:10.1016/j.scitotenv.2019.06.463.
  • Zangmeister, C. D., J. G. Radney, E. P. Vicenzi, and J. L. Weaver. 2020. Filtration efficiencies of nanoscale aerosol by cloth mask materials used to slow the spread of SARS-CoV‑2. ACS Nano 14 (7):9188–200. doi:10.1021/acsnano.0c05025.
  • Zhao, M., L. Liao, W. Xiao, X. Yu, H. Wang, Q. Wang, Y. L. Lin, F. S. Kilinc-Balci, A. Price, L. Chu, et al. 2020. Household materials selection for homemade cloth face coverings and their filtration efficiency enhancement with triboelectric charging. Nano Lett. 20 (7):5544–52. doi:10.1021/acs.nanolett.0c02211.
  • Zheng, Y.-Y., Y.-T. Ma, J.-Y. Zhang, and X. Xie. 2020. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 17 (5):259–60. doi:10.1038/s41569-020-0360-5.
  • Žilinskas, P. J., T. Lozovski, V. Jankauskas, and J. Jurkšus. 2013. Electrostatic properties and characterization of textile materials affected by ion flux. Mater. Sci. 19 (1):61–6. doi:10.5755/j01.ms.19.1.3828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.