846
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Experimental analysis of particle deposition in fibrous depth filters during gas cleaning using X-ray microscopy

, , , , &
Pages 1114-1131 | Received 11 Mar 2022, Accepted 14 Sep 2022, Published online: 24 Oct 2022

References

  • Al‐Omari, A., and E. Masad. 2004. Three dimensional simulation of fluid flow in X‐ray CT images of porous media. Int. J. Numer. Anal. Meth. Geomech. 28 (13):1327–60. doi:10.1002/nag.389.
  • Azimian, M., C. Kühnle, and A. Wiegmann. 2018. Design and optimization of fibrous filter media using lifetime multipass simulations. Chem. Eng. Technol. 41 (5):928–35. doi:10.1002/ceat.201700585.
  • Bargmann, S., B. Klusemann, J. Markmann, J. E. Schnabel, K. Schneider, C. Soyarslan, and J. Wilmers. 2018. Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater. Sci. 96:322–84. doi:10.1016/j.pmatsci.2018.02.003.
  • Bollmann, S., and P. Kleinebudde. 2021. Evaluation of different segmentation methods of X-ray micro computed tomography images. Int. J. Pharm. 606:120880. doi:10.1016/j.ijpharm.2021.120880.
  • Chang, D.-Q., C.-Y. Tien, C.-Y. Peng, M. Tang, and S.-C. Chen. 2019. Development of composite filters with high efficiency, low pressure drop, and high holding capacity PM2. 5 filtration. Sep. Purif. Technol. 212:699–708. doi:10.1016/j.seppur.2018.11.068.
  • Charvet, A., S. Du Rolland Roscoat, M. Peralba, J. F. Bloch, and Y. Gonthier. 2011. Contribution of synchrotron X-ray holotomography to the understanding of liquid distribution in a medium during liquid aerosol filtration. Chem. Eng. Sci. 66 (4):624–31. doi:10.1016/j.ces.2010.11.008.
  • Charvet, A., S. Pacault, S. Bourrous, and D. Thomas. 2018. Association of fibrous filters for aerosol filtration in predominant Brownian diffusion conditions. Sep. Purif. Technol. 207:420–6. doi:10.1016/j.seppur.2018.06.045.
  • Chaudhuri, J., K. Boettcher, and P. Ehrhard. 2021. Numerical investigation of coalescence filtration: Multiphase flow through fibrous structures. Sep. Purif. Technol. 257:117853. doi:10.1016/j.seppur.2020.117853.
  • Chaudhuri, J., K. Boettcher, and P. Ehrhard. 2022. Optical investigations into wetted commercial coalescence filter using 3D micro-computer-tomography. Chem. Eng. Sci. 248:117096. doi:10.1016/j.ces.2021.117096.
  • Du Rolland Roscoat, S., M. Decain, X. Thibault, C. Geindreau, and J.-F. Bloch. 2007. Estimation of microstructural properties from synchrotron X-ray microtomography and determination of the REV in paper materials. Acta Mater. 55 (8):2841–50. doi:10.1016/j.actamat.2006.11.050.
  • Emerson, M. J., K. M. Jespersen, A. B. Dahl, K. Conradsen, and L. P. Mikkelsen. 2017. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials. Composites Part A: Applied Science and Manufacturing 97:83–92. doi:10.1016/j.compositesa.2016.12.028.
  • Emerson, M. J., Y. Wang, P. J. Withers, K. Conradsen, A. B. Dahl, and V. A. Dahl. 2018. Quantifying fibre reorientation during axial compression of a composite through time-lapse X-ray imaging and individual fibre tracking. Compos. Sci. Technol. 168:47–54. doi:10.1016/j.compscitech.2018.08.028.
  • Fotovati, S., H. Vahedi Tafreshi, and B. Pourdeyhimi. 2010. Influence of fiber orientation distribution on performance of aerosol filtration media. Chem. Eng. Sci. 65 (18):5285–93. doi:10.1016/j.ces.2010.06.032.
  • Geerling, C., M. Azimian, A. Wiegmann, H. Briesen, and M. Kuhn. 2020. Designing optimally‐graded depth filter media using a novel multiscale method. AIChE J. 66 (2):e16808. doi:10.1002/aic.16808.
  • Gervais, P.-C., S. Poussier, N. Bardin-Monnier, G. Karcher, and D. Thomas. 2014. Combination of Single-Photon Emission and X-Ray Computed Tomography to visualize aerosol deposition in pleated filter. Sep. Purif. Technol. 126:52–61. doi:10.1016/j.seppur.2014.02.011.
  • Hoferer, J., M. J. Lehmann, E. H. Hardy, J. Meyer, and G. Kasper. 2006. Highly resolved determination of structure and particle deposition in fibrous filters by MRI. Chem. Eng. Technol. 29 (7):816–9. doi:10.1002/ceat.200600047.
  • Hoppach, D., E. Werzner, C. Demuth, E. Löwer, H. Lehmann, L. Ditscherlein, R. Ditscherlein, U. A. Peuker, and S. Ray. 2020. Experimental investigations of the depth filtration inside open‐cell foam filters supported by high‐resolution computed tomography scanning and pore‐scale numerical simulations. Adv. Eng. Mater. 22 (2):1900761. doi:10.1002/adem.201900761.
  • Hoppe, K., M. Maricanov, G. Schaldach, R. Zielke, D. Renschen, W. Tillmann, M. Thommes, and D. Pieloth. 2020. Modeling the separation performance of depth filter considering tomographic data. Environ. Prog. Sust. Energy 39 (5):e13423. doi:10.1002/ep.13423.
  • Hosseini, S. A., and H. V. Tafreshi. 2011. On the importance of fibers’ cross-sectional shape for air filters operating in the slip flow regime. Powder Technol. 212 (3):425–31. doi:10.1016/j.powtec.2011.06.025.
  • Hosseini, S. A., and H. Vahedi Tafreshi. 2012. Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code. Computers & Fluids 66 (Supplement C):157–66. doi:10.1016/j.compfluid.2012.06.017.
  • Hotaling, N. A., K. Bharti, H. Kriel, and C. G. Simon. 2015. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials 61:327–38. doi:10.1016/j.biomaterials.2015.05.015.
  • Jabri, W., P. Vroman, and A. Perwuelz. 2015. Study of the influence of synthetic filter media compressive behavior on its dust holding capacity. Sep. Purif. Technol. 156:92–102. doi:10.1016/j.seppur.2015.09.068.
  • Jackiewicz, A., S. Jakubiak, and L. Gradoń. 2015. Analysis of the behavior of deposits in fibrous filters during non-steady state filtration using X-ray computed tomography. Sep. Purif. Technol. 156:12–21. doi:10.1016/j.seppur.2015.10.004.
  • Jaganathan, S., H. Vahedi Tafreshi, and B. Pourdeyhimi. 2008. A realistic approach for modeling permeability of fibrous media: 3-D imaging coupled with CFD simulation. Chem. Eng. Sci. 63 (1):244–52. doi:10.1016/j.ces.2007.09.020.
  • Jin, X., L. Yang, X. Du, and Y. Yang. 2017. Modeling filtration performance of elliptical fibers with random distributions. Adv. Powder Technol. 28 (4):1193–201. doi:10.1016/j.apt.2017.02.005.
  • Kanaoka, C. 2019. Fine particle filtration technology using fiber as dust collection medium. KONA 36 (0):88–113. doi:10.14356/kona.2019006.
  • Kanaoka, C., H. Emi, and T. Myojo. 1980. Simulation of the growing process of a particle dendrite and evaluation of a single fiber collection efficiency with dust load. J. Aerosol Sci. 11 (4):377–89. doi:10.1016/0021-8502(80)90046-4.
  • Kasper, G., S. Schollmeier, and J. Meyer. 2010. Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. J. Aerosol Sci. 41 (12):1167–82. doi:10.1016/j.jaerosci.2010.08.006.
  • Kasper, G., S. Schollmeier, J. Meyer, and J. Hoferer. 2009. The collection efficiency of a particle-loaded single filter fiber. J. Aerosol Sci. 40 (12):993–1009. doi:10.1016/j.jaerosci.2009.09.005.
  • Lee, H. R., L. Liao, W. Xiao, A. Vailionis, A. J. Ricco, R. White, Y. Nishi, W. Chiu, S. Chu, and Y. Cui. 2021. Three-dimensional analysis of particle distribution on filter layers inside N95 respirators by deep learning. Nano Lett. 21 (1):651–7. doi:10.1021/acs.nanolett.0c04230.
  • Lehmann, M. J. 2005. Untersuchungen zur Struktur und zur Beladungskinetik von Faserfiltern. Dissertation, Universität Karlsruhe.
  • Lehmann, M. J., E. H. Hardy, J. Meyer, and G. Kasper. 2005. MRI as a key tool for understanding and modeling the filtration kinetics of fibrous media. Magn. Reson. Imag. 23 (2):341–2. doi:10.1016/j.mri.2004.11.048.
  • Lehmann, M. J., J. Weber, A. Kilian, and M. Heim. 2016. Microstructure simulation as part of fibrous filter media development processes - From real to virtual media. Chem. Eng. Technol. 39 (3):403–8. doi:10.1002/ceat.201500341.
  • Maschio, C., and A. C. F. de Arruda. 2001. Modeling of the efficiency of fibrous filters through numerical simulation and X-ray tomography. Adv. Powder Technol. 12 (3):311–29. doi:10.1163/156855201750537875.
  • Miettinen, A., C. L. Luengo Hendriks, G. Chinga-Carrasco, E. K. Gamstedt, and M. Kataja. 2012. A non-destructive X-ray microtomography approach for measuring fibre length in short-fibre composites. Compos. Sci. Technol. 72 (15):1901–8. doi:10.1016/j.compscitech.2012.08.008.
  • Myojo, T., C. Kanaoka, and H. Emi. 1984. Experimental observation of collection efficiency of a dust-loaded fiber. J. Aerosol Sci. 15 (4):483–9. doi:10.1016/0021-8502(84)90044-2.
  • Nguyen Thi, T. B., M. Morioka, A. Yokoyama, S. Hamanaka, K. Yamashita, and C. Nonomura. 2015. Measurement of fiber orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography. J. Mater. Process. Technol. 219:1–9. doi:10.1016/j.jmatprotec.2014.11.048.
  • Poggemann, L., J. Meyer, and A. Dittler. 2021. A novel method to investigate detachment of particulate structures from an elastic single fiber at low gas flow velocities. J. Aerosol Sci. 156:105785. doi:10.1016/j.jaerosci.2021.105785.
  • Prade, F., F. Schaff, S. Senck, P. Meyer, J. Mohr, J. Kastner, and F. Pfeiffer. 2017. Nondestructive characterization of fiber orientation in short fiber reinforced polymer composites with X-ray vector radiography. NDT & E International 86:65–72. doi:10.1016/j.ndteint.2016.11.013.
  • Riefler, N., M. Ulrich, M. Morshäuser, and U. Fritsching. 2018. Particle penetration in fiber filters. Particuology 40:70–9. doi:10.1016/j.partic.2017.11.008.
  • Roy, R., and S. M. Ishtiaque. 2020. Optimal design of a composite fibrous filter media through vertical integration of fibres in needle punched nonwoven. Compos. Commun. 22:100484. doi:10.1016/j.coco.2020.100484.
  • Roy, R., and S. M. Ishtiaque. 2022. Customization of hierarchical air filter media by tailoring the structural parameters of needle punched nonwoven. J. Ind. Text. 51 (1_suppl):1542S–63S. doi:10.1177/15280837211029050.
  • Schmidt, E. 1995. Experimental investigations into the compression of dust cakes deposited on filter media. Filtration & Separation 32 (8):789–93. doi:10.1016/S0015-1882(97)84129-8.
  • Schmidt, E., and F. Löffler. 1990. Preparation of dust cakes for microscopic examination. 3rd French Colloquium on Powder Science & Technology 60 (2):173–7. doi:10.1016/0032-5910(90)80141-K.
  • Schneider, Y., R. Zielke, C. Xu, M. Tayyab, U. Weber, S. Schmauder, and W. Tillmann. 2021. Experimental investigations of micro-meso damage evolution for a Co/WC-type tool material with application of digital image correlation and machine learning. Materials 14 (13):3562. doi:10.3390/ma14133562.
  • Soltani, P., M. S. Johari, and M. Zarrebini. 2014. Effect of 3D fiber orientation on permeability of realistic fibrous porous networks. Powder Technol. 254:44–56. doi:10.1016/j.powtec.2014.01.001.
  • Song, Y., and E. Shim. 2021. Structure characterization of the clogging process of coarse fibrous filter media during solid particle loading with X-ray micro-computed tomography. Sep. Purif. Technol. 273:118980. doi:10.1016/j.seppur.2021.118980.
  • Straube, C., J. Meyer, and A. Dittler. 2021. Identification of deposited oil structures on thin porous oil mist filter media applying µ-CT imaging technique. Separations 8 (10):193. doi:10.3390/separations8100193.
  • Théron, F., A. Joubert, and L. Le Coq. 2017. Numerical and experimental investigations of the influence of the pleat geometry on the pressure drop and velocity field of a pleated fibrous filter. Sep. Purif. Technol. 182:69–77. doi:10.1016/j.seppur.2017.02.034.
  • Thomas, D., P. Penicot, P. Contal, D. Leclerc, and J. Vendel. 2001. Clogging of fibrous filters by solid aerosol particles Experimental and modelling study. Chem. Eng. Sci. 56 (11):3549–61. doi:10.1016/S0009-2509(01)00041-0.
  • Tian, X., Q. Ou, J. Liu, Y. Liang, and D. Y. H. Pui. 2019. Particle loading characteristics of a two-stage filtration system. Sep. Purif. Technol. 215:351–9. doi:10.1016/j.seppur.2019.01.033.
  • Tien, C.-Y., J.-P. Chen, S. Li, Z. Li, Y.-M. Zheng, A. S. Peng, F. Zhou, C.-J. Tsai, and S.-C. Chen. 2020. Experimental and theoretical analysis of loading characteristics of different electret media with various properties toward the design of ideal depth filtration for nanoparticles and fine particles. Sep. Purif. Technol. 233:116002. doi:10.1016/j.seppur.2019.116002.
  • Yang, Y., S. Zhang, X. Zhao, J. Yu, and B. Ding. 2015. Sandwich structured polyamide-6/polyacrylonitrile nanonets/bead-on-string composite membrane for effective air filtration. Sep. Purif. Technol. 152:14–22. doi:10.1016/j.seppur.2015.08.005.
  • Yared, W., C.-Y. Chen, N. Sievers, W. Tillmann, R. Zielke, and M. Schimpfermann. 2019. Void distribution in a brazed cemented carbide steel joint analyzed by X-ray microscopy. Measurement 141:250–7. doi:10.1016/j.measurement.2019.04.045.
  • Yun, K. M., A. B. Suryamas, F. Iskandar, L. Bao, H. Niinuma, and K. Okuyama. 2010. Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Sep. Purif. Technol. 75 (3):340–5. doi:10.1016/j.seppur.2010.09.002.
  • Zeiss. 2020. Zeiss Xradia Versa Product information. Accessed September 16, 2022. https://www.zeiss.de/mikroskopie/produkte/roentgenmikroskopie/xradia-downloads.html.
  • Zoller, J., A. Zargaran, K. Braschke, J. Meyer, U. Janoske, and A. Dittler. 2021. Morphology of particulate deposits formed on a single filter fibre by exposure to mixed aerosol flow. J. Aerosol Sci. 152:105718. doi:10.1016/j.jaerosci.2020.105718.