163
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of microparticle penetration through wire screen using a lattice Boltzmann method and Lagrangian tracking approach: Comparison with experiments

, & ORCID Icon
Pages 1174-1189 | Received 16 Feb 2022, Accepted 25 Sep 2022, Published online: 24 Oct 2022

References

  • Afrouzi, H. H., K. Sedighi, M. Farhadi, and A. Moshfegh. 2015. Lattice Boltzmann analysis of micro-particles transport in pulsating obstructed channel flow. Comput. Math. Appl. 70 (5):1136–51. doi:10.1016/j.camwa.2015.07.008.
  • Alonso, M., F. Alguacil, and T. Nomura. 2001. Turbulent deposition of aerosol nanoparticles on a wire screen. J. Aerosol Sci. 32 (11):1359–67. doi:10.1016/S0021-8502(01)00060-X.
  • Alonso, M., Y. Kousaka, T. Hashimoto, and N. Hashimoto. 1997. Penetration of nanometer-sized aerosol particles through wire screen and laminar flow tube. Aerosol Sci. Technol. 27 (4):471–80. doi:10.1080/02786829708965487.
  • Ansari, V., A. S. Goharrizi, S. Jafari, and B. Abolpour. 2015. Numerical study of solid particles motion and deposition in a filter with regular and irregular arrangement of blocks with using lattice Boltzmann method. Comput. & Fluids 108:170–8. doi:10.1016/j.compfluid.2014.11.022.
  • Brewer, J. M., and S. L. Goren. 1984. Evaluation of metal oxide whiskers grown on screens for use as aerosol filtration media. Aerosol Sci. Technol. 3 (4):411–29. doi:10.1080/02786828408959029.
  • Cai, R.-R., and L.-Z. Zhang. 2016. Modeling of dynamic deposition and filtration processes of airborne particles by a single fiber with a coupled lattice Boltzmann and discrete element method. Build. Environ. 106:274–85. doi:10.1016/j.buildenv.2016.07.001.
  • Cena, L. G., B. K. Ku, and T. M. Peters. 2012. Particle collection efficiency for nylon mesh screens. Aerosol Sci. Technol. 46 (2):214–21. doi:10.1080/02786826.2011.617401.
  • Cheng, Y., J. Keating, and G. Kanapilly. 1980. Theory and calibration of a screen-type diffusion battery. J. Aerosol Sci. 11 (5–6):549–56. doi:10.1016/0021-8502(80)90127-5.
  • Cheng, Y.-S., Y. Yamada, and H.-C. Yeh. 1990. Diffusion deposition on model fibrous filters with intermediate porosity. Aerosol Sci. Technol. 12 (2):286–99. doi:10.1080/02786829008959347.
  • Cheng, Y., and H. Yeh. 1980. Theory of a screen-type diffusion battery. J. Aerosol Sci. 11 (3):313–20. doi:10.1016/0021-8502(80)90105-6.
  • Cheng, Y., H. Yeh, and K. Brinsko. 1985. Use of wire screens as a fan model filter. Aerosol Sci. Technol. 4 (2):165–74. doi:10.1080/02786828508959046.
  • Chopard, B., and A. Masselot. 1999. Cellular automata and lattice Boltzmann methods: A new approach to computational fluid dynamics and particle transport. Future Gener. Comput. Syst. 16 (2–3):249–57. doi:10.1016/S0167-739X(99)00050-3.
  • Chopard, B., A. Masselot, and A. Dupuis. 2000. A lattice gas model for erosion and particles transport in a fluid. Comput. Phys. Commun. 129 (1–3):167–76. doi:10.1016/S0010-4655(00)00104-1.
  • Emi, H., C. Kanaoka, and Y. Kuwabara. 1982. The diffusion collection efficiency of fibers for aerosol over a wide range of Reynolds numbers. J. Aerosol Sci. 13 (5):403–13. doi:10.1016/0021-8502(82)90046-5.
  • Filippova, O., and D. Hänel. 1997. Lattice-boltzmann simulation of gas-particle flow in filters. Comput. & Fluids 26 (7):697–712. doi:10.1016/S0045-7930(97)00009-1.
  • Fotovati, S., H. V. Tafreshi, and B. Pourdeyhimi. 2010. Influence of fiber orientation distribution on performance of aerosol filtration media. Chem. Eng. Sci. 65 (18):5285–93. doi:10.1016/j.ces.2010.06.032.
  • Fu, T.-H., M.-T. Cheng, and D. T. Shaw. 1990. Filtration of chain aggregate aerosols by model screen filter. Aerosol Sci. Technol. 13 (2):151–61. doi:10.1080/02786829008959433.
  • Gentry, J., and K. Choudhary. 1975. Collection efficiency and pressure drop in grid filters of high packing densities at intermediate Reynolds numbers. J. Aerosol Sci. 6 (5):277–90. doi:10.1016/0021-8502(75)90017-8.
  • Han, T. W. 2010. Experimental and numerical studies of aerosol penetration through screens. College Station, TX, USA: Texas A & M University.
  • Happel, J. 1959. Viscous flow relative to arrays of cylinders. AIChE J. 5 (2):174–7. doi:10.1002/aic.690050211.
  • He, X., and L.-S. Luo. 1997. Lattice boltzmann model for the incompressible navier–stokes equation. J. Stat. Phys. 88 (3/4):927–44. doi:10.1023/B:JOSS.0000015179.12689.e4.
  • Huang, S.-H., C.-W. Chen, C.-P. Chang, C.-Y. Lai, and C.-C. Chen. 2007. Penetration of 4.5nm to 10μm aerosol particles through fibrous filters. J. Aerosol Sci. 38 (7):719–27. doi:10.1016/j.jaerosci.2007.05.007.
  • Huang, S.-H., C.-W. Chen, Y.-M. Kuo, C.-Y. Lai, R. McKay, and C.-C. Chen. 2013. Factors affecting filter penetration and quality factor of particulate respirators. Aerosol Air Qual. Res. 13 (1):162–71. doi:10.4209/aaqr.2012.07.0179.
  • Huang, H., K. Wang, and H. Zhao. 2016. Numerical study of pressure drop and diffusional collection efficiency of several typical noncircular fibers in filtration. Powder Technol. 292:232–41. doi:10.1016/j.powtec.2016.02.012.
  • Incropera, F. P., D. P. DeWitt, T. L. Bergman, and A. S. Lavine. 1996. Fundamentals of heat and mass transfer. New York: Wiley.
  • Jafari, S., M. Salmanzadeh, M. Rahnama, and G. Ahmadi. 2010. Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice Boltzmann method. J. Aerosol Sci. 41 (2):198–206. doi:10.1016/j.jaerosci.2009.10.005.
  • Kirsch, A. A., and N. Fuchs. 1967. Studies on fibrous aerosol filters—ii. Pressure drops in systems of parallel cylinders. Ann. Occup. Hyg. 10 (1):23–30. doi.
  • Kirsch, A., and N. Fuchs. 1968. Studies on fibrous aerosol filters—iii diffusional deposition of aerosols in fibrous filters. Ann. Occup. Hyg. 11 (4):299–304. doi.
  • Kirsh, V., A. Kirsh, A. Negin, and A. Shabatin. 2015. Diffusion deposition of submicron aerosol particles in screen filters. Colloid J. 77 (3):298–305. doi:10.1134/S1061933X15030114.
  • Ku, B. K., G. J. Deye, and L. A. Turkevich. 2014. Efficacy of screens in removing long fibers from an aerosol stream–sample preparation technique for toxicology studies. Inhal. Toxicol. 26 (2):70–83. doi:10.3109/08958378.2013.854851.
  • Kuwabara, S. 1959. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14 (4):527–32. doi:10.1143/JPSJ.14.527.
  • Lee, K., and B. Liu. 1982. Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1 (2):147–61. doi:10.1080/02786828208958584.
  • Li, A., and G. Ahmadi. 1992. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 16 (4):209–26. doi:10.1080/02786829208959550.
  • Li, A., and G. Ahmadi. 1993. Deposition of aerosols on surfaces in a turbulent channel flow. Int. J. Eng. Sci. 31 (3):435–51. doi:10.1016/0020-7225(93)90017-O.
  • Lim, S., H. Park, and W. G. Shin. 2017. Experimental investigation and numerical modeling of the orientation angle of silver nanowires passing through polyester filters. Aerosol Sci. Technol. 51 (3):292–300. doi:10.1080/02786826.2016.1258113.
  • Lin, K. C., R. Patel, and J.-S. Tsai. 2017. Filtration of aerosol particles by clean elliptical fibers with relevance to pore size: A lattice Boltzmann-cellular automaton model. Computers & Fluids 156:534–44. doi:10.1016/j.compfluid.2017.08.011.
  • Lin, K. C., H. Tao, and K.-W. Lee. 2014. An early stage of aerosol particle transport in flows past periodic arrays of clear staggered obstructions: A computational study. Aerosol Sci. Technol. 48 (12):1299–307. doi:10.1080/02786826.2014.982783.
  • Lin, K. C., and J.-S. Tsai. 2018. Simulation of nanoparticle penetration through mesh screens using a hybrid lattice-Boltzmann Lagrangian method and comparison with experiments. J. Aerosol Sci. 124:146–59. doi:10.1016/j.jaerosci.2018.07.008.
  • Li, W., S. Shen, and H. Li. 2016. Study and optimization of the filtration performance of multi-fiber filter. Adv. Powder Technol. 27 (2):638–45. doi:10.1016/j.apt.2016.02.018.
  • Liu, Z. G., and P. K. Wang. 1997. Pressure drop and interception efficiency of multifiber filters. Aerosol Sci. Technol. 26 (4):313–25. doi:10.1080/02786829708965433.
  • Liu, J., X. Zhang, H. Zhang, L. Zheng, C. Huang, H. Wu, R. Wang, and X. Jin. 2017. Low resistance bicomponent spunbond materials for fresh air filtration with ultra-high dust holding capacity. RSC Adv. 7 (69):43879–87. doi:10.1039/C7RA07694K.
  • Masselot, A., and B. Chopard. 1998. A lattice Boltzmann model for particle transport and deposition. Europhys. Lett. 42 (3):259–64. doi:10.1209/epl/i1998-00239-3.
  • Mei, R., L.-S. Luo, and W. Shyy. 1999. An accurate curved boundary treatment in the lattice Boltzmann method. Comput. Phys. 155 (2):307–30. doi:10.1006/jcph.1999.6334.
  • Mei, R., and W. Shyy. 1998. On the finite difference-based lattice boltzmann method in curvilinear coordinates. Comput. Phys. 143 (2):426–48. doi:10.1006/jcph.1998.5984.
  • Mei, R., W. Shyy, D. Yu, and L.-S. Luo. 2000. Lattice Boltzmann method for 3-D flows with curved boundary. Comput. Phys. 161 (2):680–99. doi:10.1006/jcph.2000.6522.
  • Myojo, T. 1999. A simple method to determine the length distribution of fibrous aerosols. Aerosol Sci. Technol. 30 (1):30–9. doi:10.1080/027868299304868.
  • Qian, F., N. Huang, J. Lu, and Y. Han. 2014. CFD–DEM simulation of the filtration performance for fibrous media based on the mimic structure. Comput. Chem. Eng. 71:478–88. doi:10.1016/j.compchemeng.2014.09.018.
  • Reist, P. 1993. Aerosol science and technology. New York: McGraw-Hill.
  • Shou, D., J. Fan, H. Zhang, X. Qian, and L. Ye. 2015. Filtration efficiency of non-uniform fibrous filters. Aerosol Sci. Technol. 49 (10):912–9. doi:10.1080/02786826.2015.1083092.
  • Son, M., H. Park, M. Park, J. Wang, and W. G. Shin. 2014. Silver nanowire penetration through screen filter. Aerosol Sci. Technol. 48 (5):480–8. doi:10.1080/02786826.2014.890280.
  • Stechkina, I., A. Kirsch, and N. Fuchs. 1969. Studies on fibrous aerosol filters—IV calculation of aerosol deposition in model filters in the range of maximum penetration. Ann. Occup. Hyg. 12 (1):1–8.
  • Thomas, J. W., and L. E. Hinchliffe. 1972. Filtration of 0.001 μm particles by wire screens. J. Aerosol Sci. 3 (5):387–93. doi:10.1016/0021-8502(72)90093-6.
  • Tuchman, D. P., J. C. Volkwein, and R. P. Vinson. 2008. Implementing infrared determination of quartz particulates on novel filters for a prototype dust monitor. J. Environ. Monit. 10 (5):671–8. doi:10.1039/b803804j.
  • Wang, J., S. C. Kim, and D. Y. Pui. 2011. Carbon nanotube penetration through a screen filter: Numerical modeling and comparison with experiments. Aerosol Sci. Technol. 45 (3):443–52. doi:10.1080/02786826.2010.541531.
  • Wang, H., H. Zhao, Z. Guo, and C. Zheng. 2012. Numerical simulation of particle capture process of fibrous filters using lattice Boltzmann two-phase flow model. Powder Technol. 227:111–22. doi:10.1016/j.powtec.2011.12.057.
  • Wang, H., H. Zhao, K. Wang, Y. He, and C. Zheng. 2013. Simulation of filtration process for multi-fiber filter using the lattice-Boltzmann two-phase flow model. J. Aerosol Sci. 66:164–78. doi:10.1016/j.jaerosci.2013.08.016.
  • Yamamoto, N., K. Kumagai, M. Fujii, D. G. Shendell, O. Endo, and Y. Yanagisawa. 2005. Size-dependent collection of micrometer-sized particles using nylon mesh. Atmos. Environ. 39 (20):3675–85. doi:10.1016/j.atmosenv.2005.03.001.
  • Zare, A., O. Abouali, and G. Ahmadi. 2007. Computational investigation of airflow, shock wave and nano-particle separation in supersonic and hypersonic impactors. J. Aerosol Sci. 38 (10):1015–30. doi:10.1016/j.jaerosci.2007.07.006.
  • Zhu, C., C.-H. Lin, and C. S. Cheung. 2000. Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol. 112 (1–2):149–62. doi:10.1016/S0032-5910(99)00315-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.