2,109
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Molecular composition and gas-particle partitioning of indoor cooking aerosol: Insights from a FIGAERO-CIMS and kinetic aerosol modeling

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1156-1173 | Received 21 Jun 2022, Accepted 17 Sep 2022, Published online: 24 Oct 2022

References

  • Abdullahi, K. L., J. M. Delgado-Saborit, and R. M. Harrison. 2013. Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmos. Environ. 71:260–94. doi:10.1016/j.atmosenv.2013.01.061.
  • Allan, J. D., P. I. Williams, W. T. Morgan, C. L. Martin, M. J. Flynn, J. Lee, E. Nemitz, G. J. Phillips, M. W. Gallagher, and H. Coe. 2009. Contributions from transport, solid fuel burning and cooking to primary organic aerosols in two UK cities. Atmos. Chem. Phys. 9 (5):19103–57.
  • Anderson, J. O., J. G. Thundiyil, and A. Stolbach. 2012. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8 (2):166–75. doi:10.1007/s13181-011-0203-1.
  • Bannan, T. J., M. Le Breton, M. Priestley, S. D. Worrall, A. Bacak, N. A. Marsden, A. Mehra, J. Hammes, M. Hallquist, M. R. Alfarra, et al. 2018. A method for extracting calibrated volatility information from the FIGAERO-HR-ToF-CIMS and its experimental application. Atmos. Meas. Tech. 12 (3):1429–39.
  • Bergauff, M. A. 2010. Quantification and reduction of exposure to residential woodsmoke particulate matter. Graduate Student Theses, Dissertations, & Professional Papers, 789, The University of Montana. https://scholarworks.umt.edu/etd/789
  • Boedicker, E. K., E. W. Emerson, G. R. McMeeking, S. Patel, M. E. Vance, and D. K. Farmer. 2021. Fates and spatial variations of accumulation mode particles in a multi-zone indoor environment during the HOMEChem campaign. Environ. Sci: Processes Impacts 23 (7):1029–39. doi:10.1039/D1EM00087J.
  • Brown, W. L., D. A. Day, H. Stark, D. Pagonis, J. E. Krechmer, X. Liu, D. J. Price, E. F. Katz, P. F. DeCarlo, C. G. Masoud, et al. 2021. Real-time organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry. Indoor Air. 31 (1):141–55. doi:10.1111/ina.12721.
  • Buchholz, A., A. Ylisirniö, W. Huang, C. Mohr, M. Canagaratna, D. R. Worsnop, S. Schobesberger, and A. Virtanen. 2019. Deconvolution of FIGAERO-CIMS thermal desorption profiles using positive matrix factorisation to identify chemical and physical processes during particle evaporation. Atmos. Chem. Phys. 2019 (November):1–36.
  • Burnett, R., H. Chen, M. Szyszkowicz, N. Fann, B. Hubbell, C. A. Pope, J. S. Apte, M. Brauer, A. Cohen, S. Weichenthal, et al. 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. U S A 115 (38):9592–7. doi:10.1073/pnas.1803222115.
  • Cain, K. P., E. Karnezi, and S. N. Pandis. 2020. Challenges in determining atmospheric organic aerosol volatility distributions using thermal evaporation techniques. Aerosol Sci. Technol. 54 (8):941–57. doi:10.1080/02786826.2020.1748172.
  • Charan, S. M., Y. Huang, R. S. Buenconsejo, Q. Li, D. R. Cocker, and J. H. Seinfeld. 2022. Secondary organic aerosol formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations. Atmos. Chem. Phys. 22 (2):917–28. doi:10.5194/acp-22-917-2022.
  • Chenyakin, Y., A. D. Ullmann, E. Evoy, L. Renbaum-Wolff, S. Kamal, and K. A. Bertram. 2017. Diffusion coefficients of organic molecules in sucrose-water solutions and comparison with Stokes-Einstein predictions. Atmos. Chem. Phys. 17 (3):2423–35. doi:10.5194/acp-17-2423-2017.
  • Coggon, M. M., B. C. McDonald, A. Vlasenko, P. R. Veres, F. Bernard, A. R. Koss, B. Yuan, J. B. Gilman, J. Peischl, K. C. Aikin, et al. 2018. Diurnal variability and emission pattern of decamethylcyclopentasiloxane (D5) from the application of personal care products in two north American cities. Environ. Sci. Technol. 52 (10):5610–8. doi:10.1021/acs.est.8b00506.
  • Crippa, M., P. F. Decarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, et al. 2013. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmos. Chem. Phys. 13 (2):961–81. doi:10.5194/acp-13-961-2013.
  • D’Ambro, E. L., B. H. Lee, J. Liu, J. E. Shilling, C. J. Gaston, F. D. Lopez-Hilfiker, S. Schobesberger, R. A. Zaveri, C. Mohr, A. Lutz, et al. 2017. Molecular composition and volatility of isoprene photochemical oxidation secondary organic aerosol under low- and high-NOx conditions. Atmos. Chem. Phys. 17 (1):159–74. doi:10.5194/acp-17-159-2017.
  • DeCarlo, P. F., J. R. Kimmel, A. Trimborn, M. J. Northway, J. T. Jayne, A. C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K. S. Docherty, et al. 2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78 (24):8281–9. doi:10.1021/ac061249n.
  • DeRieux, W. S. W., Y. Li, P. Lin, J. Laskin, A. Laskin, A. K. Bertram, S. A. Nizkorodov, and M. Shiraiwa. 2018. Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition. Atmos. Chem. Phys. 18 (9):6331–51. doi:10.5194/acp-18-6331-2018.
  • Dette, H. P., M. Qi, D. C. Schröder, A. Godt, and T. Koop. 2014. Glass-forming properties of 3-methylbutane-1,2,3-tricarboxylic acid and its mixtures with water and pinonic acid. J. Phys. Chem. A 118 (34):7024–33.
  • Donahue, N. M., S. A. Epstein, S. N. Pandis, and A. L. Robinson. 2011. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 11 (7):3303–18. doi:10.5194/acp-11-3303-2011.
  • Donahue, N. M., A. L. Robinson, C. O. Stanier, and S. N. Pandis. 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40 (8):2635–43.
  • Donahue, N. M., A. L. Robinson, E. R. Trump, I. Riipinen, and J. H. Kroll. 2014. Volatility and aging of atmospheric organic aerosol. In Atmospheric and aerosol chemistry. Topics in current chemistry (V339), ed. V.F. McNeill, P.A. Ariya, 97–143. Berlin, Heidelberg: Springer.
  • Drewnick, F., S. S. Hings, P. DeCarlo, J. T. Jayne, M. Gonin, K. Fuhrer, S. Weimer, J. L. Jimenez, K. L. Demerjian, S. Borrmann, et al. 2005. A new time-of-flight aerosol mass spectrometer (TOF-AMS) – Instrument description and first field deployment. Aerosol Sci. Technol. 39 (7):637–58. doi:10.1080/02786820500182040.
  • Elser, M., R. J. Huang, R. Wolf, J. G. Slowik, Q. Wang, F. Canonaco, G. Li, C. Bozzetti, K. R. Daellenbach, Y. Huang, et al. 2016. New insights into PM2.5 chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmos. Chem. Phys. 16 (5):3207–25. doi:10.5194/acp-16-3207-2016.
  • Farmer, D. K., M. E. Vance, J. P. D. Abbatt, A. Abeleira, M. R. Alves, C. Arata, E. Boedicker, S. Bourne, F. Cardoso-Saldaña, R. Corsi, et al. 2019. Overview of HOMEChem: House observations of microbial and environmental chemistry. Environ. Sci. Process. Impacts. 21 (8):1280–300.
  • Fu, Z., H. B. Xie, J. Elm, X. Guo, Z. Fu, Z. Fu, and J. Chen. 2020. Formation of low-volatile products and unexpected high formaldehyde yield from the atmospheric oxidation of methylsiloxanes. Environ. Sci. Technol. 54 (12):7136–45.
  • Grieshop, A. P., M. A. Miracolo, N. M. Donahue, and A. L. Robinson. 2009. Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements. Environ. Sci. Technol. 43 (13):4750–6.
  • Holeček, M. 2020. Histidine in health and disease: Metabolism, Physiological importance, and use as a supplement. Nutrients 12 (3):848. doi:10.3390/nu12030848.
  • Huang, W., H. Saathoff, A. Pajunoja, X. Shen, K.-H. Naumann, R. Wagner, A. Virtanen, T. Leisner, and C. Mohr. 2018. α-Pinene secondary organic aerosol at low temperature: Chemical composition and implications for particle viscosity. Atmos. Chem. Phys. 18 (4):2883–98. doi:10.5194/acp-18-2883-2018.
  • Huboyo, H. S., S. Tohno, and R. Cao. 2011. Indoor PM2.5 characteristics and CO concentration related to water-based and oil-based cooking emissions using a gas stove. Aerosol Air Qual. Res. 11 (4):401–11. doi:10.4209/aaqr.2011.02.0016.
  • Huffman, J. A., K. S. Docherty, A. C. Aiken, M. J. Cubison, I. M. Ulbrich, P. F. Decarlo, D. Sueper, J. T. Jayne, D. R. Worsnop, P. J. Ziemann, et al. 2009. Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmos. Chem. Phys. 9 (18):7161–82. doi:10.5194/acp-9-7161-2009.
  • Huffman, J. A., P. J. Ziemann, J. T. Jayne, D. R. Worsnop, and J. L. Jimenez. 2008. Development and characterization of a fast-stepping/scanning thermodenuder for chemically-resolved aerosol volatility measurements. Aerosol Sci. Technol. 42 (5):395–407. doi:10.1080/02786820802104981.
  • Ito, H. 1977. The formation of maltol and isomaltol through degradation of sucrose. Agric. Biol. Chem. 41 (7):1307–8.
  • Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33 (1–2):49–70. doi:10.1080/027868200410840.
  • Jiménez-Guerrero, P, and N. Ratola. 2021. Characterizing the regional concentrations and seasonality of the emerging pollutant decamethylcyclopentasiloxane (D5) using a WRFþCHIMERE modeling approach. Elementa, 9 (1):00137.
  • Karnezi, E., I. Riipinen, and S. N. Pandis. 2014. Measuring the atmospheric organic aerosol volatility distribution: A theoretical analysis. Atmos. Meas. Tech. 7 (9):2953–65. doi:10.5194/amt-7-2953-2014.
  • Katz, E. F., H. Guo, P. Campuzano-Jost, D. A. Day, W. L. Brown, E. Boedicker, M. Pothier, D. M. Lunderberg, S. Patel, K. Patel, et al. 2021. Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass spectrometers. Aerosol Sci. Technol. 55 (10):1099–114. doi:10.1080/02786826.2021.1931013.
  • Katz, E. F., D. M. Lunderberg, W. L. Brown, D. A. Day, J. L. Jimenez, W. W. Nazaroff, A. H. Goldstein, and P. F. Decarlo. 2021. Large emissions of low-volatility siloxanes during residential oven use. Environ. Sci. Technol. Lett. 8 (7):519–24. doi:10.1021/acs.estlett.1c00433.
  • Klein, F., N. J. Farren, C. Bozzetti, K. R. Daellenbach, D. Kilic, N. K. Kumar, S. M. Pieber, J. G. Slowik, R. N. Tuthill, J. F. Hamilton, et al. 2016. Indoor terpene emissions from cooking with herbs and pepper and their secondary organic aerosol production potential. Sci. Rep. 6:36623.
  • Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann. 2001. The national human activity pattern survey. Lawrence Berkeley Natl. Lab 11 (3):231–52.
  • Koop, T., J. Bookhold, M. Shiraiwa, and U. Pöschl. 2011. Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13 (43):19238–55.
  • Kroll, J. H., C. Y. Lim, S. H. Kessler, and K. R. Wilson. 2015. Heterogeneous oxidation of atmospheric organic aerosol: Kinetics of changes to the amount and oxidation state of particle-phase organic carbon. J. Phys. Chem. A 119 (44):10767–83. doi:10.1021/acs.jpca.5b06946.
  • Lee, B. H., F. D. Lopez-Hilfiker, C. Mohr, T. Kurtén, D. R. Worsnop, and J. A. Thornton. 2014. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: Application to atmospheric inorganic and organic compounds. Environ. Sci. Technol. 48 (11):6309–17. doi:10.1021/es500362a.
  • Li, Y., T. M. Fu, J. Z. Yu, X. Feng, L. Zhang, J. Chen, S. K. R. Boreddy, K. Kawamura, P. Fu, X. Yang, et al. 2021. Impacts of chemical degradation on the global budget of atmospheric levoglucosan and its use as a biomass burning tracer. Environ. Sci. Technol. 55 (8):5525–36.
  • Li, Y., U. Pöschl, and M. Shiraiwa. 2016. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. Atmos. Chem. Phys. 16 (5):3327–44. doi:10.5194/acp-16-3327-2016.
  • Li, Y, and M. Shiraiwa. 2019. Timescales of secondary organic aerosols to reach equilibrium at various temperatures and relative humidities. Atmos. Chem. Phys. 19 (9):5959–71. doi:10.5194/acp-19-5959-2019.
  • Li, Y., A. Tasoglou, A. Liangou, K. P. Cain, L. Jahn, P. Gu, E. Kostenidou, and S. N. Pandis. 2018. Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol. Atmos. Environ. 176:103–9. doi:10.1016/j.atmosenv.2017.11.035.
  • Li, Y., Y. Wu, J. Xu, A. Wu, Z. Zhao, M. Tong, and S. Luan. 2021. Chemical characterization of particulate organic matter from commercial restaurants: Alkyl PAHs as new tracers for cooking. Sci. Total Environ. 770:145308. doi:10.1016/j.scitotenv.2021.145308.
  • Liu, T., Z. Wang, X. Wang, and C. K. Chan. 2018. Primary and secondary organic aerosol from heated cooking oil emissions. Atmos. Chem. Phys. 18 (15):11363–74. doi:10.5194/acp-18-11363-2018.
  • Lopez-Hilfiker, F. D., C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, T. F. Mentel, A. J. Carrasquillo, K. E. Daumit, J. F. Hunter, et al. 2015. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: The importance of accretion products and other low volatility compounds. Atmos. Chem. Phys. 15 (14):7765–76. doi:10.5194/acp-15-7765-2015.
  • Lopez-Hilfiker, F. D., C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, T. F. Mentel, A. Lutz, M. Hallquist, D. Worsnop, et al. 2014. A novel method for online analysis of gas and particle composition: Description and evaluation of a filter inlet for gases and AEROsols (FIGAERO). Atmos. Meas. Tech. 7 (4):983–1001. doi:10.5194/amt-7-983-2014.
  • Louvaris, E. E., E. Karnezi, E. Kostenidou, C. Kaltsonoudis, and S. N. Pandis. 2017. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements. Atmos. Meas. Tech. 10 (10):3909–18. doi:10.5194/amt-10-3909-2017.
  • Lunderberg, D. M., K. Kristensen, Y. Tian, C. Arata, P. K. Misztal, Y. Liu, N. Kreisberg, E. F. Katz, P. F. Decarlo, S. Patel, et al. 2020. Surface emissions modulate indoor SVOC concentrations through volatility-dependent partitioning. Environ. Sci. Technol. 54 (11):6751–60.
  • Luning, P. A., T. Ebbenhorst‐Seller, T. de Rijk, and J. P. Roozen. 1995. Effect of hot-air drying on flavour compounds of bell peppers (Capsicum annuum). J. Sci. Food Agric. 68 (3):355–65. doi:10.1002/jsfa.2740680315.
  • Mai, H., M. Shiraiwa, R. C. Flagan, and J. H. Seinfeld. 2015. Under what conditions can equilibrium gas–particle partitioning be expected to hold in the atmosphere?. Environ. Sci. Technol. 49 (19):11485–91. doi:10.1021/acs.est.5b02587.
  • Masoud, C. G, and L. Hildebrandt Ruiz. 2021. Chlorine-initiated oxidation of α-pinene: Formation of secondary organic aerosol and highly oxygenated organic molecules. ACS Earth Space Chem. 5 (9):2307–19. doi:10.1021/acsearthspacechem.1c00150.
  • Mattila, J. M., P. S. J. Lakey, M. Shiraiwa, C. Wang, J. P. D. Abbatt, C. Arata, A. H. Goldstein, L. Ampollini, E. F. Katz, P. F. Decarlo, et al. 2020. Multiphase chemistry controls inorganic chlorinated and nitrogenated compounds in indoor air during bleach cleaning. Environ. Sci. Technol. 54 (3):1730–9. doi:10.1021/acs.est.9b05767.
  • Mcdonald, J. D., B. Zielinska, E. M. Fujita, J. C. Sagebiel, J. C. Chow, and J. G. Watson. 2003. Emissions from charbroiling and grilling of chicken and beef. J. Air Waste Manage. Assoc. 53 (2):185–94. doi:10.1080/10473289.2003.10466141.
  • Mikhailov, E., S. Vlasenko, S. T. Martin, T. Koop, and U. Pöschl. 2009. Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 9 (24):9491–522. doi:10.5194/acp-9-9491-2009.
  • Mohr, C., P. F. DeCarlo, M. F. Heringa, R. Chirico, J. G. Slowik, R. Richter, C. Reche, A. Alastuey, X. Querol, R. Seco, et al. 2012. Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmos. Chem. Phys. 12 (4):1649–65. doi:10.5194/acp-12-1649-2012.
  • Mohr, C., J. A. Huffman, M. J. Cubison, A. C. Aiken, K. S. Docherty, J. R. Kimmel, I. M. Ulbrich, M. Hannigan, and J. L. Jimenez. 2009. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations. Environ. Sci. Technol. 43 (7):2443–9. doi:10.1021/es8011518.
  • Murphy, B. N., N. M. Donahue, C. Fountoukis, and S. N. Pandis. 2011. Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set. Atmos. Chem. Phys. 11 (15):7859–73. doi:10.5194/acp-11-7859-2011.
  • Nasir, Z. A, and I. Colbeck. 2013. Particulate pollution in different housing types in a UK suburban location. Sci. Total Environ. 445–446:165–76. doi:10.1016/j.scitotenv.2012.12.042.
  • Nel, A. 2005. Air pollution–related illness: Effects of particles. Science 308 (5723):804–6. doi:10.1126/science.1108752.
  • Nováková, Z., J. Novák, Z. Kitanovski, P. Kukučka, M. Smutná, M. Wietzoreck, G. Lammel, and K. Hilscherová. 2020. Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives. Environ. Int. 139:105634
  • O’Brien, R. E., Y. Li, K. J. Kiland, E. F. Katz, V. W. Or, E. Legaard, E. Q. Walhout, C. Thrasher, V. H. Grassian, P. F. DeCarlo, et al. 2021. Emerging investigator series: Chemical and physical properties of organic mixtures on indoor surfaces during HOMEChem. Environ. Sci: Processes Impacts 23 (4):559–68. doi:10.1039/D1EM00060H.
  • Pankow, J. F. 2001. A consideration of the role of gas/particle partitioning in the deposition of nicotine and other tobacco smoke compounds in the respiratory tract. Chem. Res. Toxicol. 14 (11):1465–81. doi:10.1021/tx0100901.
  • Pankow, J. F. 1994. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 28 (2):189–93. doi:10.1016/1352-2310(94)90094-9.
  • Patel, S., S. Sankhyan, E. K. Boedicker, P. F. Decarlo, D. K. Farmer, A. H. Goldstein, E. F. Katz, W. W. Nazaroff, Y. Tian, J. Vanhanen, et al. 2020. Indoor particulate matter during HOMEChem: Concentrations, size distributions, and exposures. Environ. Sci. Technol. 54 (12):7107–16.
  • Petters, M. D, and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi:10.5194/acp-7-1961-2007.
  • Pope, C. A, and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 56 (6):709–42. doi:10.1080/10473289.2006.10464485.
  • Reyes-Villegas, E., T. Bannan, M. Le Breton, A. Mehra, M. Priestley, C. Percival, H. Coe, and J. D. Allan. 2018. Online chemical characterization of food-cooking organic aerosols: Implications for source apportionment. Environ. Sci. Technol. 52 (9):5308–18. doi:10.1021/acs.est.7b06278.
  • Riipinen, I., J. R. Pierce, N. M. Donahue, and S. N. Pandis. 2010. Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics. Atmos. Environ. 44 (5):597–607. doi:10.1016/j.atmosenv.2009.11.022.
  • Schobesberger, S., E. L. Ambro, F. D. Lopez-Hilfiker, C. Mohr, and J. A. Thornton. 2018. A model framework to retrieve thermodynamic and kinetic properties of organic aerosol from composition-resolved thermal desorption measurements. Atmos. Chem. Phys. 18 (20):14757–85. doi:10.5194/acp-18-14757-2018.
  • Shiraiwa, M., C. Pfrang, T. Koop, and U. Pöschl. 2012. Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): Linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmos. Chem. Phys. 12 (5):2777–94. doi:10.5194/acp-12-2777-2012.
  • Shiraiwa, M., A. Zuend, A. K. Bertram, and J. H. Seinfeld. 2013. Gas-particle partitioning of atmospheric aerosols: Interplay of physical state, non-ideal mixing and morphology. Phys. Chem. Chem. Phys. 15 (27):11441–53.
  • Sjaastad, A. K., R. B. Jørgensen, and K. Svendsen. 2010. Exposure to polycyclic aromatic hydrocarbons (PAHs), mutagenic aldehydes and particulate matter during pan frying of beefsteak. Occup. Environ. Med. 67 (4):228–32. doi:10.1136/oem.2009.046144.
  • Slowik, J. G., Vlasenko, A. McGuire, M., Evans, G. J. Abbatt, and J. P. D. 2010. Simultaneous factor analysis of organic particle and gas mass spectra: AMS and PTR-MS measurements at an urban site. Atmos. Chem. Phys. 10 (4):1969–88. doi:10.5194/acp-10-1969-2010.
  • Shi, X., T. Xia, B. E. McKamey, X. Wu, Y. Sun, W. Zhou, and G. Zhang. 2021. Concise and efficient synthesis of [6]-paradol. Org. Process Res. Dev. 25 (6):1360–5. doi:10.1021/acs.oprd.0c00553.
  • Stark, H., R. L. N. Yatavelli, S. L. Thompson, H. Kang, J. E. Krechmer, J. R. Kimmel, B. B. Palm, W. Hu, P. L. Hayes, D. A. Day, et al. 2017. Impact of thermal decomposition on thermal desorption instruments: advantage of thermogram analysis for quantifying volatility distributions of organic species. Environ. Sci. Technol. 51 (15):8491–500. doi:10.1021/acs.est.7b00160.
  • Voliotis, A., Y. Wang, Y. Shao, M. Du, T. Bannan, C. Percival, S. Pandis, M. R. Alfarra, and G. McFiggans. 2021. Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems. Atmos. Chem. Phys. 21 (18):14251–73. doi:10.5194/acp-21-14251-2021.
  • Wallace, L. 2006. Indoor sources of ultrafine and accumulation mode particles: Size distributions, size-resolved concentrations, and source strengths. Aerosol Sci. Technol. 40 (5):348–60. doi:10.1080/02786820600612250.
  • Wan, M. P., C. L. Wu, G. N. Sze To, T. C. Chan, and C. Y. H. Chao. 2011. Ultrafine particles, and PM2.5 generated from cooking in homes. Atmos. Environ. 45 (34):6141–8. doi:10.1016/j.atmosenv.2011.08.036.
  • Wang, C., D. B. Collins, C. Arata, A. H. Goldstein, J. M. Mattila, D. K. Farmer, L. Ampollini, P. F. DeCarlo, A. Novoselac, M. E. Vance, et al. 2020. Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. Sci. Adv. 6 (8):8973. doi:10.1126/sciadv.aay8973.
  • Wang, D. S, and L. Hildebrandt Ruiz. 2018. Chlorine-initiated oxidation of alkanes under high-NO conditions: Insights into secondary organic aerosol composition and volatility using a FIGAERO-CIMS. Atmos. Chem. Phys. 18 (21):15535–53. doi:10.5194/acp-18-15535-2018.
  • Wang, D. S, and L. Hildebrandt Ruiz. 2017. Secondary organic aerosol from chlorine-initiated oxidation of isoprene. Atmos. Chem. Phys. 17 (22):13491–508. doi:10.5194/acp-17-13491-2017.
  • Yucuis, R. A., C. O. Stanier, and K. C. Hornbuckle. 2013. Cyclic siloxanes in air, including identification of high levels in Chicago and distinct diurnal variation. Chemosphere 92 (8):905–10. doi:10.1016/j.chemosphere.2013.02.051.
  • Zobrist, B., C. Marcolli, D. A. Pedernera, and T. Koop. 2008. Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 8 (17):5221–44. doi:10.5194/acp-8-5221-2008.
  • Zuend, A, and J. H. Seinfeld. 2012. Modeling the gas-particle partitioning of secondary organic aerosol: The importance of liquid-liquid phase separation. Atmos. Chem. Phys. 12 (9):3857–82. doi:10.5194/acp-12-3857-2012.