345
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Deposition of non-spherical particles on indoor surfaces: Modification of diffusion coefficient

ORCID Icon & ORCID Icon
Pages 1190-1200 | Received 21 Aug 2022, Accepted 06 Oct 2022, Published online: 19 Oct 2022

References

  • Bhaduri, B., A. Neild, and T. W. Ng. 2008. Directional brownian diffusion dynamics with variable magnitudes. Appl. Phys. Lett. 92 (8):084105. doi:10.1063/1.2887883.
  • Chandrasekhar, S. 1943. Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15 (1):1–89. doi:10.1103/RevModPhys.15.1.
  • Chien, S.-F. 1994. Settling velocity of irregularly shaped particles. SPE Drilling & Completion 9 (4):281–9. doi:10.2118/26121-PA.
  • Cong, Z., S. Kang, S. Dong, X. Liu, and D. Qin. 2010. Elemental and individual particle analysis of atmospheric aerosols from high himalayas. Environ. Monit. Assess. 160 (1-4):323–35. doi:10.1007/s10661-008-0698-3.
  • Dong, Z. W., D. H. Qin, K. M. Li, S. C. Kang, T. Wei, and J. F. Lu. 2019. Spatial variability, mixing states and composition of various haze particles in atmosphere during winter and summertime in Northwest China. Environ. Pollut. 246:79–88. doi:10.1016/j.envpol.2018.11.101.
  • Ermak, D. L., and H. Buckholz. 1980. Numerical integration of the langevin equation: Monte carlo simulation. Comput. Phys. 35 (2):169–82. doi:10.1016/0021-9991(80)90084-4.
  • Gentry, J. W., K. R. Spurny, and J. Schörmann. 1991. The diffusion coefficients for ultrathin chrysotile fibers. J. Aerosol Sci. 22 (7):869–80. doi:10.1016/0021-8502(91)90080-2.
  • Gentry, J. W., K. R. Spurny, J. Schormann, H. Opiela, and G. Weiss. 1982. Measurement of the diffusion coefficient for chrysotile and crocidolite fibers. Atmospher. Environ. (1967) 16 (12):2947–57. doi:10.1016/0004-6981(82)90046-4.
  • Haider, A., and O. Levenspiel. 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58 (1):63–70. doi:10.1016/0032-5910(89)80008-7.
  • Han, Y., A. Alsayed, M. Nobili, and A. G. Yodh. 2009. Quasi-two-dimensional diffusion of single ellipsoids: Aspect ratio and confinement effects. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80 (1 Pt 1):011403. doi:10.1103/PhysRevE.80.011403.
  • Han, Y., A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh. 2006. Brownian motion of an ellipsoid. Science 314 (5799):626–30. doi:10.1126/science.1130146.
  • Heal, M. R., P. Kumar, and R. M. Harrison. 2012. Particles, air quality, policy and health. Chem. Soc. Rev. 41 (19):6606–30. doi:10.1039/c2cs35076a.
  • Hinds. 1982. Aerosol technology: Properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons Inc.
  • Hinze, J. O. 1960. Turbulence: An introduction to its mechanism and theory. New York: Mcgraw-Hill Book Company, Inc.
  • Hölzer, A., and M. Sommerfeld. 2008. New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technol. 184 (3):361–5. doi:10.1016/j.powtec.2007.08.021.
  • Hu, T., J. Cao, C. Zhu, Z. Zhao, S. Liu, and D. Zhang. 2018. Morphologies and elemental compositions of local biomass burning particles at urban and glacier sites in southeastern tibetan plateau: Results from an expedition in 2010. Sci. Total Environ. 628-629:772–81. doi:10.1016/j.scitotenv.2018.02.073.
  • Johansen, S. T. 1991. The deposition of particles on vertical walls. Int. J. Multiphase Flow 17 (3):355–76. doi:10.1016/0301-9322(91)90005-N.
  • Kim, K. H., E. Kabir, and S. Kabir. 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74:136–43. doi:10.1016/j.envint.2014.10.005.
  • Kirpes, R. M., B. Rodriguez, S. Kim, S. China, A. Laskin, K. Park, J. Jung, A. P. Ault, and K. A. Pratt. 2020. Emerging investigator series: Influence of marine emissions and atmospheric processing on individual particle composition of summertime arctic aerosol over the Bering Strait and Chukchi Sea. Environ. Sci. Process. Impacts. 22 (5):1201–13. doi:10.1039/c9em00495e.
  • Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H. Engelmann. 2001. The national human activity pattern survey (nhaps): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 11 (3):231–52. doi:10.1038/sj.jea.7500165.
  • Kvasnak, W., and G. Ahmadi. 1995. Fibrous particle deposition in a turbulent channel flow - an experimental-study. Aerosol Sci. Technol. 23 (4):641–52. doi:10.1080/02786829508965344.
  • Kvasnak, W., and G. Ahmadi. 1996. Deposition of ellipsoidal particles in turbulent duct flows. Chem. Eng. Sci. 51 (23):5137–48. doi:10.1016/S0009-2509(96)00357-0.
  • Kvasnak, W., G. Ahmadi, R. Bayer, and M. Gaynes. 1993. Experimental investigation of dust particle deposition in a turbulent channel flow. J. Aerosol Sci. 24 (6):795–815. doi:10.1016/0021-8502(93)90047-D.
  • Kwon, H. S., M. H. Ryu, and C. Carlsten. 2020. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 52 (3):318–28. doi:10.1038/s12276-020-0405-1.
  • Lai, A. C. K., and W. W. Nazaroff. 2000. Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J. Aerosol Sci. 31 (4):463–76. doi:10.1016/S0021-8502(99)00536-4.
  • Lammers, A., N. A. H. Janssen, A. J. F. Boere, M. Berger, C. Longo, S. J. H. Vijverberg, A. H. Neerincx, A. H. Maitland-van der Zee, and F. R. Cassee. 2020. Effects of short-term exposures to ultrafine particles near an airport in healthy subjects. Environ. Int. 141:105779. doi:10.1016/j.envint.2020.105779.
  • Leith, D. 1987. Drag on nonspherical objects. Aerosol Sci. Technol. 6 (2):153–61. doi:10.1080/02786828708959128.
  • Li, R., H. Fu, Q. Hu, C. Li, L. Zhang, J. Chen, and A. W. Mellouki. 2017. Physiochemical characteristics of aerosol particles in the typical microenvironment of hospital in Shanghai, China. Sci. Total Environ. 580:651–9. doi:10.1016/j.scitotenv.2016.12.011.
  • Loth, E. 2008. Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 182 (3):342–53. doi:10.1016/j.powtec.2007.06.001.
  • MATLAB. 2021. in version 9.10.0 R2021a. Natick, MA: The Mathworks, Inc.
  • Nazaroff, W. W. 2004. Indoor particle dynamics. Indoor Air. 14(Suppl 7):175–83. doi:10.1111/j.1600-0668.2004.00286.x.
  • Nazaroff, W. W. 2018. The particles around us. Indoor Air. 28 (2):215–7. doi:10.1111/ina.12444.
  • Nazaroff, W. W., and G. R. Cass. 1991. Protecting museum collections from soiling due to the deposition of airborne particles. Atmos. Environ. Part A 25 (5–6):841–52. doi:10.1016/0960-1686(91)90127-S.
  • Panda, U., and T. Das. 2017. Micro-structural analysis of individual aerosol coarse particles during different seasons at an eastern coastal site in India. Atmos. Pollut. Res. 8 (1):196–207. doi:10.1016/j.apr.2016.08.012.
  • Riley, W. J., T. E. McKone, A. C. Lai, and W. W. Nazaroff. 2002. Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environ. Sci. Technol. 36 (2):200–7. doi:10.1021/es010723y.
  • Shapiro, M., and M. Goldenberg. 1993. Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24 (1):65–87. doi:10.1016/0021-8502(93)90085-N.
  • Shi, S., and B. Zhao. 2013. Deposition of indoor airborne particles onto human body surfaces: A modeling analysis and manikin-based experimental study. Aerosol Sci. Technol. 47 (12):1363–73. doi:10.1080/02786826.2013.843772.
  • Stanaway, J. D., A. Afshin, E. Gakidou, S. S. Lim, D. Abate, K. H. Abate, C. Abbafati, N. Abbasi, H. Abbastabar, F. Abd-Allah, Collaborators, et al. 2018. Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. The Lancet 392 (10159):1923–94. doi:10.1016/s0140-6736(18)32225-6.
  • Tavakol, M. M., E. Ghahramani, O. Abouali, M. Yaghoubi, and G. Ahmadi. 2017. Deposition fraction of ellipsoidal fibers in a model of human nasal cavity for laminar and turbulent flows. J. Aerosol Sci. 113:52–70. doi:10.1016/j.jaerosci.2017.07.008.
  • Tian, L., and G. Ahmadi. 2016. Transport and deposition of nano-fibers in human upper tracheobronchial airways. J. Aerosol Sci. 91:22–32. doi:10.1016/j.jaerosci.2015.09.002.
  • Wadell, H. 1932. Volume, shape, and roundness of rock particles. The Journal of Geology 40 (5):443–51. doi:10.1086/623964.
  • Weschler, C. J., H. Shields, and B. M. Shah. 1996. Understanding and reducing the indoor concentration of submicron particles at a commercial building in southern California. J. Air Waste Manag. Assoc. 46 (4):291–9. doi:10.1080/10473289.1996.10467463.
  • Zarus, G. M., C. Muianga, C. M. Hunter, and R. S. Pappas. 2021. A review of data for quantifying human exposures to micro and nanoplastics and potential health risks. Sci. Total Environ. 756:144010. doi:10.1016/j.scitotenv.2020.144010.
  • Zhao, L., and H. I. Andersson. 2016. Why spheroids orient preferentially in near-wall turbulence. J. Fluid Mech. 807:221–34. doi:10.1017/jfm.2016.619.
  • Zhao, L. H., H. I. Andersson, and J. J. J. Gillissen. 2013. On inertial effects of long fibers in wall turbulence: Fiber orientation and fiber stresses. Acta Mech. 224 (10):2375–84. doi:10.1007/s00707-013-0920-4.
  • Zhao, H. Y., L. Y. Shao, and Q. Yao. 2005. Microscopic morphology and size distribution of residential indoor pm10 in Beijing city. Indoor Built Environ. 14:513–20. doi:10.1177/1420326x04059280.
  • Zhao, B., and J. Wu. 2006a. Modeling particle deposition from fully developed turbulent flow in ventilation duct. Atmos. Environ. 40 (3):457–66. doi:10.1016/j.atmosenv.2005.09.043.
  • Zhao, B., and J. Wu. 2006b. Modeling particle deposition onto rough walls in ventilation duct. Atmos. Environ. 40 (36):6918–27. doi:10.1016/j.atmosenv.2006.06.015.
  • Zhao, B., and J. Wu. 2007. Particle deposition in indoor environments: Analysis of influencing factors. J. Hazard. Mater. 147 (1–2):439–48. doi:10.1016/j.jhazmat.2007.01.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.