356
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of low-cost aerosol and gas sensors for real-time measurements of electronic cigarette exposure

ORCID Icon, , ORCID Icon, , & ORCID Icon
Pages 153-164 | Received 05 Oct 2022, Accepted 24 Nov 2022, Published online: 12 Dec 2022

References

  • Alphasense. 2019. User Manual: OPC-N3 Optical Particle Counter, Issue 2.
  • Baldelli, A., M. Jeronimo, B. Loosley, G. Owen, I. Welch, and K. Bartlett. 2020. Particle matter, volatile organic compounds, and occupational allergens: correlation and sources in laboratory animal facilities. SN Appl. Sci. 2 (10):1672. doi:10.1007/s42452-020-03465-9.
  • Burkart, J., G. Steiner, G. Reischl, H. Moshammer, M. Neuberger, and R. Hitzenberger. 2010. Characterizing the performance of two optical particle counters (Grimm OPC1.108 and OPC1.109) under urban aerosol conditions. J. Aerosol Sci. 41 (10):953–62. doi:10.1016/j.jaerosci.2010.07.007.
  • Crilley, L. R., M. Shaw, R. Pound, L. J. Kramer, R. Price, S. Young, A. C. Lewis, and F. D. Pope. 2018. Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring. Atmos. Meas. Tech. 11 (2):709–20. doi:10.5194/amt-11-709-2018.
  • David, G., E. A. Parmentier, I. Taurino, and R. Signorell. 2020. Tracing the composition of single e-cigarette aerosol droplets in situ by laser-trapping and Raman scattering. Sci. Rep. 10 (1):7929. doi:10.1038/s41598-020-64886-5.
  • Dominici, F., R. D. Peng, M. L. Bell, L. Pham, A. McDermott, S. L. Zeger, and J. M. Samet. 2006. FIne particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295 (10):1127–34. doi:10.1001/jama.295.10.1127.
  • Dubey, R., A. K. Patra, J. Joshi, D. Blankenberg, S. S. R. Kolluru, B. Madhu, and S. Raval. 2022. Evaluation of low-cost particulate matter sensors OPC N2 and PM Nova for aerosol monitoring. Atmos. Pollut. Res. 13 (3):101335. doi:10.1016/j.apr.2022.101335.
  • Ganapathy, V., J. Manyanga, L. Brame, D. McGuire, B. Sadhasivam, E. Floyd, D. A. Rubenstein, I. Ramachandran, T. Wagener, and L. Queimado. 2017. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage. PLoS One. 12 (5):e0177780. doi:10.1371/journal.pone.0177780.
  • Gentzke, A. S., M. Creamer, K. A. Cullen, B. K. Ambrose, G. Willis, A. Jamal, and B. A. King. 2019. Vital signs: Tobacco product use among middle and high school students—United States, 2011–2018. MMWR. Morb. Mortal. Wkly. Rep. 68 (6):157–64. doi:10.15585/mmwr.mm6806e1.
  • Hallett, L., M. Tatum, G. Thomas, S. Sousan, K. Koehler, and T. Peters. 2018. An inexpensive sensor for noise. J. Occupational Environ Hygiene. 15 (5):448–54. doi:10.1080/15459624.2018.1438614.
  • Halterman, A., S. Sousan, and T. M. Peters. 2017. Comparison of respirable mass concentrations measured by a personal dust monitor and a personal DataRAM to gravimetric measurements. Ann. Work Expo. Health. 62 (1):62–71. doi:10.1093/annweh/wxx083.
  • Harvanko, A. M., C. M. Havel, P. Jacob, and N. L. Benowitz. 2020. Characterization of nicotine salts in 23 electronic cigarette refill liquids. Nicotine Tob. Res. 22 (7):1239–43. doi:10.1093/ntr/ntz232.
  • Hinds, W. C. 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed. New York: Wiley-Interscience.
  • Honeywell. 2021. MINIRAE ® 3000 + Portable Handheld VOC Monitor. Accessed from the web in July 2021: https://prod-edam.honeywell.com/content/dam/honeywell-edam/sps/his/en-us/products/gas-and-flame-detection/documents/Datasheet_MiniRAE2030002B_EN.pdf.
  • Ingebrethsen, B. J., S. K. Cole, and S. L. Alderman. 2012. Electronic cigarette aerosol particle size distribution measurements. Inhal. Toxicol. 24 (14):976–84. doi:10.3109/08958378.2012.744781.
  • Jayaratne, R., X. Liu, K.-H. Ahn, A. Asumadu-Sakyi, G. Fisher, J. Gao, A. Mabon, M. Mazaheri, B. Mullins, M. Nyaku, et al. 2020. Low-cost PM2.5 sensors: an assessment of their suitability for various applications. Aerosol Air Qual. Res. doi:10.4209/aaqr.2018.10.0390.
  • Jo, J., B. Jo, J. Kim, S. Kim, and W. Han. 2020. Development of an IoT-based indoor air quality monitoring platform. J. Sens. 2020:1–14. doi:10.1155/2020/8749764.
  • JUUL. 2021. Learn about the ingredients in JUULpods. Accessed from the web in July 2021: https://www.juul.com/learn/pods.
  • Kane, D. B., and W. Li. 2021. Particle size measurement of electronic cigarette aerosol with a cascade impactor. Aerosol Sci. Technol. 55 (2):205–14. doi:10.1080/02786826.2020.1849536.
  • Lerner, C. A., I. K. Sundar, H. Yao, J. Gerloff, D. J. Ossip, S. McIntosh, R. Robinson, and I. Rahman. 2015. Vapors produced by electronic cigarettes and E-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One. 10 (2):e0116732. doi:10.1371/journal.pone.0116732.
  • Lerner, C. A., P. Rutagarama, T. Ahmad, I. K. Sundar, A. Elder, and I. Rahman. 2016. Electronic cigarette aerosols and copper nanoparticles induce mitochondrial stress and promote DNA fragmentation in lung fibroblasts. Biochem. Biophys. Res. Commun. 477 (4):620–5. doi:10.1016/j.bbrc.2016.06.109.
  • Lestari, K. S., M. V. Humairo, and U. Agustina. 2018. Formaldehyde vapor concentration in electronic cigarettes and health complaints of electronic cigarettes smokers in Indonesia. J. Environ. Public Health. 2018:9013430. doi:10.1155/2018/9013430.
  • Li, T., R. Hu, Z. Chen, Q. Li, S. Huang, Z. Zhu, and L.-F. Zhou. 2018. Fine particulate matter (PM2.5): The culprit for chronic lung diseases in China. Chronic Dis. Transl. Med. 4 (3):176–86. doi:10.1016/j.cdtm.2018.07.002.
  • Luo, Y., Y. Wu, L. Li, Y. Guo, E. Çetintaş, Y. Zhu, and A. Ozcan. 2021. Dynamic imaging and characterization of volatile aerosols in e-cigarette emissions using deep learning-based holographic microscopy. ACS Sens. 6 (6):2403–10. doi:10.1021/acssensors.1c00628.
  • Manikonda, A., N. Zíková, P. K. Hopke, and A. R. Ferro. 2016. Laboratory assessment of low-cost PM monitors. J. Aerosol Sci. 102:29–40. doi:10.1016/j.jaerosci.2016.08.010.
  • NJOY. 2021. NJOY electronic cigarette products. Accessed from the web in July 2021: https://njoy.com/us/shop/daily/njoy-daily-menthol/.
  • Ogunwale, M. A., M. Li, M. V. Ramakrishnam Raju, Y. Chen, M. H. Nantz, D. J. Conklin, and X.-A. Fu. 2017. Aldehyde detection in electronic cigarette aerosols. ACS Omega. 2 (3):1207–14. doi:10.1021/acsomega.6b00489.
  • Olegario, J. M., S. Regmi, and S. Sousan. 2021. Evaluation of low-cost optical particle counters for agricultural exposure measurements. Applied Engng. Agric. 37 (1):113–22. doi:10.1303/aea.14091.
  • Olegario, J., S. Regmi, and S. Sousan. 2020. Evaluation of low-cost optical particle counters for agricultural exposure measurements. International Society for Agricultural Safety and Health Annual Conference.
  • Palmisani, J., A. Di Gilio, L. Palmieri, C. Abenavoli, M. Famele, R. Draisci, and G. de Gennaro. 2019. Evaluation of second-hand exposure to electronic cigarette vaping under a real scenario: measurements of ultrafine particle number concentration and size distribution and comparison with traditional tobacco smoke. Toxics 7 (4):59. doi:10.3390/toxics7040059.
  • Park, Y. M., S. Sousan, D. Streuber, and K. Zhao. 2021. GeoAir—a novel portable, GPS-enabled, low-cost air-pollution sensor: design strategies to facilitate citizen science research and geospatial assessments of personal exposure. SEN 21 (11):3761. doi:10.3390/s21113761.
  • Protano, C., P. Avino, M. Manigrasso, V. Vivaldi, F. Perna, F. Valeriani, and M. Vitali. 2018. Environmental electronic vape exposure from four different generations of electronic cigarettes: Airborne particulate matter levels. IJERPH. 15 (10):2172. doi:10.3390/ijerph15102172.
  • Semple, S., A. E. Ibrahim, A. Apsley, M. Steiner, and S. Turner. 2015. Using a new, low-cost air quality sensor to quantify second-hand smoke (SHS) levels in homes. Tob. Control. 24 (2):153–8. doi:10.1136/tobaccocontrol-2013-051188.
  • Sensirion. 2020a. Datasheet SGP30: Indoor air quality sensor for TVOC and CO2eq measurements Accessed in July 2021: https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9_Gas_Sensors/Datasheets/Sensirion_Gas_Sensors_Datasheet_SGP30.pdf.
  • Sensirion. 2020b. Datasheet SPS30: Particulate matter sensor for air quality monitoring and control. Accessed from the web in March 2021 https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.6_Particulate_Matter/Datasheets/Sensirion_PM_Sensors_Datasheet_SPS30.pdf.
  • Sousan, S., A. Gray, C. Zuidema, L. Stebounova, G. Thomas, K. Koehler, and T. Peters. 2018. Sensor selection to improve estimates of particulate matter concentration from a low-cost network. SEN 18 (9):3008. doi:10.3390/s18093008.
  • Sousan, S., J. Pender, D. Streuber, M. Haley, W. Shingleton, and E. Soule. 2022. Laboratory determination of gravimetric correction factors for real-time area measurements of electronic cigarette aerosols. Aerosol Sci. Technol. 56 (6):517–29. doi:10.1080/02786826.2022.2047152.
  • Sousan, S., K. Koehler, G. Thomas, J. H. Park, M. Hillman, A. Halterman, and T. M. Peters. 2016a. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 50 (5):462–73. doi:10.1080/02786826.2016.1162901.
  • Sousan, S., K. Koehler, L. Hallett, and T. M. Peters. 2016b. Evaluation of the Alphasense optical particle counter (OPC-N2) and the Grimm portable aerosol spectrometer (PAS-1.108). Aerosol Sci. Technol. 50 (12):1352–65. doi:10.1080/02786826.2016.1232859.
  • Sousan, S., K. Koehler, L. Hallett, and T. M. Peters. 2017. Evaluation of consumer monitors to measure particulate matter. J. Aerosol Sci. 107:123–33. doi:10.1016/j.jaerosci.2017.02.013.
  • Sousan, S., S. Regmi, and Y. M. Park. 2021. Laboratory evaluation of low-cost optical particle counters for environmental and occupational exposures. SEN 21 (12):4146. doi:10.3390/s21124146.
  • Soussy, S., A. EL-Hellani, R. Baalbaki, R. Salman, A. Shihadeh, and N. A. Saliba. 2016. Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes. Tob. Control. 25 (Suppl 2):ii88–ii93. doi:10.1136/tobaccocontrol-2016-053220.
  • Streuber, D., Y. M. Park, and S. Sousan. 2022. Laboratory and field evaluations of the GeoAir2 air quality monitor for use in indoor environments. Aerosol Air Qual. Res. 22 (8):220119. doi:10.4209/aaqr.220119.
  • Talih, S., R. Salman, R. El-Hage, E. Karam, N. Karaoghlanian, A. El-Hellani, N. Saliba, and A. Shihadeh. 2019. Characteristics and toxicant emissions of JUUL electronic cigarettes. Tob. Control. 28 (6):678–80. doi:10.1136/tobaccocontrol-2018-054616.
  • Tryner, J., J. Mehaffy, D. Miller-Lionberg, and J. Volckens. 2020. Effects of aerosol type and simulated aging on performance of low-cost PM sensors. J Aerosol Sci. 150:105654. doi:10.1016/j.jaerosci.2020.105654.
  • Tzortzi, A., S. I. Teloniatis, G. Matiampa, G. Bakelas, V. K. Vyzikidou, C. I. Vardavas, P. K. Behrakis, and E. Fernandez. 2018. Passive exposure to e-cigarette emissions: Immediate respiratory effects. Tob Prev Cessat 4:18. doi:10.18332/tpc/89977.
  • VAPING. 2021. Drag 2 Refresh Edition Kit. Accessed from the web in July 2021: https://vaping.com/voopoo-drag-2-kit.
  • Vardavas, C. I., N. Anagnostopoulos, M. Kougias, V. Evangelopoulou, G. N. Connolly, and P. K. Behrakis. 2012. Short-term pulmonary effects of using an electronic cigarette: impact on respiratory flow resistance, impedance, and exhaled nitric oxide. Chest 141 (6):1400–6. doi:10.1378/chest.11-2443.
  • Zhang, J., J. P. Marto, and J. J. Schwab. 2018. Exploring the applicability and limitations of selected optical scattering instruments for PM mass measurement. Atmos. Meas. Tech. 11 (5):2995–3005. doi:10.5194/amt-11-2995-2018.
  • Zuidema, C., L. V. Stebounova, S. Sousan, A. Gray, O. Stroh, G. Thomas, T. Peters, and K. Koehler. 2020. Estimating personal exposures from a multi-hazard sensor network. J. Expo. Sci. Environ. Epidemiol. 30 (6):1013–22. doi:10.1038/s41370-019-0146-1.
  • Zuidema, C., L. V. Stebounova, S. Sousan, G. Thomas, K. Koehler, and T. M. Peters. 2019. Sources of error and variability in particulate matter sensor network measurements. J. Occup. Environ. Hyg. 16 (8):564–74. doi:10.1080/15459624.2019.1628965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.