189
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The role of a reverse vortex finder for the design of a high performance uniflow cyclone

&
Pages 200-214 | Received 19 Sep 2022, Accepted 22 Nov 2022, Published online: 21 Dec 2022

References

  • Ahn, Y. C., H. K. Jeong, H. S. Shin, Y. J. Hwang, G. T. Kim, S. I. Cheong, J. K. Lee, and C. Kim. 2006. Design and performance evaluation of vacuum cleaners using cyclone technology. Korean J. Chem. Eng. 23 (6):925–930. doi:10.1007/s11814-006-0009-z.
  • Alves, A., J. Paiva, and R. Salcedo. 2015. Cyclone optimization including particle clustering. Powder Technol. 272:14–22. doi:10.1016/j.powtec.2014.11.016.
  • Bogodage, S. G., and A. Y. T. Leung. 2015. CFD simulation of cyclone separators to reduce air pollution. Powder Technol. 286:488–506. doi:10.1016/j.powtec.2015.08.023.
  • Brar, L. S., and R. P. Sharma. 2015. Effect of varying diameter on the performance of industrial scale gas cyclone dust separators. ICMPC 2 (4):3230–3237.
  • Chen, J., and X. Liu. 2010. Simulation of a modified cyclone separator with a novel exhaust. Sep. Purif. Technol. 73 (2):100–105. doi:10.1016/j.seppur.2010.03.007.
  • Chen, X., J. Yu, and Y. X. Zhang. 2021. The use of axial cyclone separator in the separation of wax from natural gas: a theoretical approach. Energy Rep. 7:2615–2624. doi:10.1016/j.egyr.2021.05.006.
  • Chigier, N. A., and J. M. Beér. 1964. Velocity and static-pressure distributions in swirling air jets issuing from annular and divergent nozzles. J. Basic Eng. 86 (4):788–796. doi:10.1115/1.3655954.
  • Dehdarinejad, E., and M. Bayareh. 2021. An overview of numerical simulation on gas-solid cyclone separators with tangential inlet. ChemBioEng Rev. 8 (4):375–391. doi:10.1002/cben.202000034.
  • Dewil, R., J. Baeyens, and B. Caerts. 2012. CFB cyclones at high temperature: operational results and design assessment. Particuology 36:3916–3930.
  • Dirgo, J., and D. Leith. 1985. Cyclone collection efficiency: comparison of experimental results with theoretical predictions. Aerosol Sci. Technol. 4 (4):401–415. doi:10.1080/02786828508959066.
  • Dorfeshan, M., and S. Hashemi Ma. 2011. Development of a cone vortex stabilizer to improve cyclone separator performance. J. Appl. Sci. 11 (12):2179–2185. doi:10.3923/jas.2011.2179.2185.
  • Duan, J. H., S. Gao, C. Hou, W. Wang, P. Zhang, and C. J. Li. 2020. Effect of cylinder vortex stabilizer on separator performance of the Stairmand cyclone. Powder Technol. 372:305–316. doi:10.1016/j.powtec.2020.06.031.
  • Dziubak, T. 2020. Experimental research on separation efficiency of aerosol particles in vortex tube separators with electric field. Bull. Pol. Acad. Sci. Tech. Sci. 68:503–516.
  • Elsayed, K., and C. Lacor. 2011. The effect of cyclone inlet dimensions on the flow pattern and performance. Appl. Math. Modell. 35 (4):1952–1968. doi:10.1016/j.apm.2010.11.007.
  • Erol, H., O. Turgut, and R. Unal. 2019. Experimental and numerical study of Stairmand cyclone separators: a comparison of the results of small-scale and large-scale cyclones. Heat Mass Transf. 55 (8):2341–2354. doi:10.1007/s00231-019-02589-y.
  • Fatahian, E., H. Fatahian, E. Hosseini, and G. Ahmadi. 2021. A low-cost solution for the collection of fine particles in square cyclone: a numerical analysis. Powder Technol. 387:454–465. doi:10.1016/j.powtec.2021.04.048.
  • Gao, Z., J. Wang, J. Y. Wang, Y. Mao, and Y. Wei. 2019. Analysis of the effect of vortex on the flow field of a cylindrical cyclone separator. Sep. Purif. Technol. 211:438–447. doi:10.1016/j.seppur.2018.08.024.
  • Gao, Z., Y. Wei, Z. Liu, C. Jia, J. Wang, J. Y. Wang, and Y. Mao. 2021. Internal components optimization in cyclone separators: systematic classification and meta-analysis. Sep. Purif. Rev. 50 (4):400–416. doi:10.1080/15422119.2020.1789995.
  • Gao, Z.-W., Z.-X. Liu, Y.-D. Wei, C.-X. Li, S.-H. Wang, X.-Y. Qi, and W. Huang. 2022. Numerical analysis on the influence of vortex motion in a reverse Stairmand cyclone separator by using LES model. Pet. Sci. 19 (2):848–860. doi:10.1016/j.petsci.2021.11.009.
  • Gong, G. C., Z. Z. Yang, and S. L. Zhu. 2012. Numerical investigation of the effect of helix angle and leaf margin on the flow pattern and the performance of the axial flow cyclone separator. Appl. Math. Model. 36 (8):3916–3930. doi:10.1016/j.apm.2011.11.034.
  • Haig, C. W., A. Hursthouse, S. Mcilwain, and D. Sykes. 2014. The effect of particle agglomeration and attrition on the separation efficiency of a Stairmand cyclone. Powder Technol. 258:110–124. doi:10.1016/j.powtec.2014.03.008.
  • Hinds, W. C. 1999. Aerosol technology: properties, behavior, and measurement of airborne particles. Chapter 10. New York: John Wiley and Sons Ltd.
  • Hsiao, T. C., D. Chen, P. S. Greenberg, and K. W. Street. 2011. Effect of geometric configuration on the collection efficiency of axial flow cyclones. J. Aerosol Sci. 42 (2):78–86. doi:10.1016/j.jaerosci.2010.11.004.
  • Huang, A. N., N. Maeda, D. Shibata, T. Fukasawa, H. Yoshida, H. Kuo, and K. Fukui. 2017. Influence of a laminarizer at the inlet on the classification performance of cyclone separator. Sep. Purif. Technol. 173:408–416.
  • Jafarnezhad, A., H. Salarian, S. Kheradmand, and J. Khaleghinia. 2021. Performance improvement of a cyclone separator using different shapes of vortex finder under high-temperature operating condition. J. Braz. Soc. Mech. Sci. Eng. 43 (2):81–96. doi:10.1007/s40430-020-02783-8.
  • Kim, J. H., H. Lee, and W. G. Shin. 2021. Horizontal injection spray drying aerosol generator using an ultrasonic nozzle with clean counter flow. J. Aerosol Sci. 151:105662. doi:10.1016/j.jaerosci.2020.105662.
  • Li, J., C. Ma, W. Tao, J. C. Chang, and X. Q. Zhao. 2019. Effects of roughness on the performance of axial flow cyclone separators using numerical simulation method. Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy, 233:914–927.
  • Li, X. D., J. H. Yan, Y. Cao, M. Ni, and K. Cen. 2003. Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator. Chem. Eng. J. 95:235–240.
  • Li, Z. Y., Z. Tong, A. B. Yu, H. Miao, K. Chu, H. Zhang, G. Guo, and J. Chen. 2022. Numerical investigation of separation efficiency of the cyclone with supercritical fluid-solid flow. Particuology 62:36–46. doi:10.1016/j.partic.2021.06.002.
  • Liang, J., C. Huang, B. Zhao, and H. Song. 2021. Numerical simulation and performance evaluation of cyclone separator with built-in material for sand removal in gas well. Chem. Eng. 16 (4):1–16. doi:10.1002/apj.2648.
  • Liu, C., L. Wang, J. Wang, and Q. Liu. 2005. Investigation of energy loss mechanisms in cyclone separators. Chem. Eng. Technol. 28 (10):1182–1190. doi:10.1002/ceat.200500214.
  • Muschelknautz, U., P. Pattis, M. Reinalter, and M. Kraxner. 2011. Design criteria of uniflow cyclones for the separation of solid particles from gases. 10th International Conference on Cirulating Fluidized Beds and Fluidization Technology-CFB-10. 236–247.
  • Noh, S. Y., D. S. Park, and S. J. Yook. 2021. Numerical investigation of bus stop structures in Seoul for the reduction of fine dust entry. J. Mech. Sci. Technol. 35 (1):371–379. doi:10.1007/s12206-020-1237-6.
  • Noh, S. Y., J. E. Heo, S. H. Woo, S. J. Kim, M. H. Ock, Y. J. Kim, and S. J. Yook. 2018. Performance improvement of a cyclone separator using multiple subsidiary cyclones. Powder Technol. 338:145–152. doi:10.1016/j.powtec.2018.07.015.
  • Oh, J., S. Choi, J. Kim, S. Lee, and G. Jin. 2014. Numerical simulation of an internal flow field in a uniflow cyclone separator. Powder Technol. 254:500–507. doi:10.1016/j.powtec.2014.01.057.
  • Omer, S., K. Irfan, A. Atakan, and S. Ali. 2014. Experimental investigation into performance characteristics of reversed flow cyclone separators. Int. J. Glob. Warm. 6Nos. :2–3.
  • Peng, W., A. C. Hoffmann, and H. Dries. 2004. Separation characteristics of swirl tube dust separators. AIChE J. 50 (1):87–96. doi:10.1002/aic.10008.
  • Pillei, M., T. Kofler, A. Wierschem, and M. Kraxner. 2020. Intensification of uniflow cyclone performance at low loading. Powder Technol. 360:522–533. doi:10.1016/j.powtec.2019.09.011.
  • Qiu, Y. F., B. Q. Deng, and C. N. Kim. 2012. Numerical study of the flow field and separation efficiency of a divergent cyclone. Powder Technol. 217:231–237. doi:10.1016/j.powtec.2011.10.031.
  • Ryszard, W., W. Pawel, and W. W. Agnieszka. 2021. Numerical and experimental analysis of flow pattern, pressure drop and collection efficiency in a cyclone with a square inlet and different dimensions of a vortex finder. Energies 14 (1):111.
  • Salim, M., and S. C. Cheah. 2009. Wall y + strategy for dealing with wall-bounded turbulent flows. Proceedings of the International MultiConference of Engineers and Computer Scientists. 2.
  • Shastri, R., and L. S. Brar. 2020. Numerical investigations of the flow-field inside cyclone separators with different cylinder-to-cone ratios using large-eddy simulation. Sep. Purif. Technol. 249:117149. doi:10.1016/j.seppur.2020.117149.
  • Shastri, R., R. P. Sharma, and L. S. Brar. 2020. Numerical investigations of cyclone separators with different cylinder-to-cone ratios. Part. Sci. Technol. 40:337–345.
  • Sheen, H. J., W. J. Chen, S. Y. Jeng, and T. L. Huang. 1996. Correlation of swirl number for a radial-type swirl generator. Exp. Therm. Fluid Sci. 12 (4):444–451. doi:10.1016/0894-1777(95)00135-2.
  • Su, Y. X. 2006. The turbulent characteristics of the gas-solid suspension in a square cyclone separator. Chem. Eng. Sci. 61 (5):1395–1400. doi:10.1016/j.ces.2005.09.002.
  • Sun, Y., J. Yu, W. Wang, S. Yang, X. Hu, and J. Feng. 2020. Design of vortex finder structure for decreasing the pressure drop of a cyclone separator. Korean J. Chem. Eng. 37 (5):743–754. doi:10.1007/s11814-020-0498-1.
  • Sung, G., H. U. Kim, D. Shin, W. G. Shin, and T. Kim. 2018. High efficiency axial wet cyclone air sampler. Aerosol Air Qual. Res. 18 (10):2529–2537. doi:10.4209/aaqr.2017.12.0596.
  • Svarovsky, L. 1986. Chapter 8: Solid-gas separation. In Gas fluidization technology, ed. D. Geldart. New York: John Wiley and Sons Ltd.
  • Vaughan, N. P. 1988. Construction and testing of an axial flow cyclone pre-separator. J. Aerosol Sci. 19 (3):295–305. doi:10.1016/0021-8502(88)90270-4.
  • Vekteris, V., V. Strishka, D. Ozarovskis, and V. Mokshin. 2014. Experimental investigation of processes in acoustic cyclone separator. Adv. Powder Technol. 25 (3):1118–1123. doi:10.1016/j.apt.2014.02.017.
  • Wang, B., D. L. Xu, K. W. Chu, and A. B. Yu. 2006. Numerical study of gas-solid flow in a cyclone separator. Appl. Math. Modell. 30 (11):1326–1342. doi:10.1016/j.apm.2006.03.011.
  • Wang, D. Y., A. Khalatov, J. Shi, and I. Borisov. 2021. Swirling flow heat transfer and hydrodynamics in the model of blade cyclone cooling with inlet co-swirling flow. Int. J. Heat Mass Transf. 175:121404. doi:10.1016/j.ijheatmasstransfer.2021.121404.
  • Wang, W. H. 2003. Validation of the integrity of a HEPA filter system. Health Phys. 85:101–107.
  • Wei, Q., G. Sun, and C. Gao. 2020. Numerical analysis of axial gas flow in cyclone separators with different vortex finder diameters and inlet dimensions. Powder Technol. 369:321–333. doi:10.1016/j.powtec.2020.05.038.
  • Wu, X. M., and X. B. Chen. 2019. Effects of vortex finder shapes on the performance of cyclone separators. Am. Inst. Chem. Eng. 38 (5):2–7. doi:10.1002/ep.13168.
  • Xiong, Z., Z. Ji, and X. Wu. 2014. Development of a cyclone separator with high efficiency and low pressure drop in axial inlet cyclones. Powder Technol. 253:644–649. doi:10.1016/j.powtec.2013.12.016.
  • Zhang, J., Z. Zha, P. Che, H. Ding, and W. Pan. 2019. Influence of inlet height and velocity on main performances in the cyclone separator. Part. Sci. Technol. 37 (6):669–676. doi:10.1080/02726351.2018.1423589.
  • Zhang, S., M. Shin, and W. G. Shin. 2021. Comparison of models to predict the collection efficiency of an axial cyclone with a spindle vane. J. Aerosol Sci. 157:105817. doi:10.1016/j.jaerosci.2021.105817.
  • Zhang, Z., S. J. Dong, R. Jin, K. Dong, L. Hou, and B. Wang. 2022. Vortex characteristics of a gas cyclone determined with different vortex identification methods. Powder Technol. 404:117370. doi:10.1016/j.powtec.2022.117370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.