395
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The use of transmission electron microscopy with scanning mobility particle size spectrometry for an enhanced understanding of the physical characteristics of aerosol particles generated with a flow tube reactor

ORCID Icon, , , , ORCID Icon &
Pages 279-295 | Received 10 Oct 2022, Accepted 10 Jan 2023, Published online: 21 Feb 2023

References

  • Alstadt, V. J., K. T. Jansen, E.-J E. Ott, M. B. Altaf, and M. A. Freedman. 2018. Local aerosol composition before and during the transition from coal-fired power to natural gas. Atmos. Environ. 190:169–76. doi:10.1016/j.atmosenv.2018.07.013.
  • Altaf, M. B., D. D. Dutcher, T. M. Raymond, and M. A. Freedman. 2018. Effect of particle morphology on cloud condensation nuclei activity. ACS Earth Space Chem. 2 (6):634–9. doi:10.1021/acsearthspacechem.7b00146.
  • Ault, A. P., and J. L. Axson. 2017. Atmospheric aerosol chemistry: Spectroscopic and microscopic advances. Anal. Chem. 89 (1):430–52. doi:10.1021/acs.analchem.6b04670.
  • Beaver, M. R., R. M. Garland, C. A. Hasenkopf, T. Baynard, A. R. Ravishankara, and M. A. Tolbert. 2008. A laboratory investigation of the relative humidity dependence of light extinction by organic compounds from lignin combustion. Environ. Res. Lett. 3 (4):045003. doi:10.1088/1748-9326/3/4/045003.
  • Bell, S., and K. Morris. 2010. An introduction to microscopy. Boca Raton, FL: CRC Press.
  • Bondy, A. L., R. M. Kirpes, R. L. Merzel, K. A. Pratt, M. M. Banaszak Holl, and A. P. Ault. 2017. Atomic force microscopy-infrared dpectroscopy of individual atmospheric aerosol particles: Subdiffraction limit vibrational spectroscopy and morphological analysis. Anal. Chem. 89 (17):8594–8. doi:10.1021/acs.analchem.7b02381.
  • Buseck, P. R., D. J. Jacob, M. Pósfai, J. Li, and J. R. Anderson. 2000. Minerals in the air: An environmental perspective. Int. Geol. Rev. 42 (7):577–93. doi:10.1080/00206810009465101.
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, and D. J. Hofmann. 1992. Climate forcing by anthropogenic aerosols. Science 255 (5043):423–30. doi:10.1126/science.255.5043.423.
  • Ching, J., K. Adachi, Y. Zaizen, Y. Igarashi, and M. Kajino. 2019. Aerosol mixing state revealed by transmission electron microscopy pertaining to cloud formation and human airway deposition. NPJ Clim. Atmos. Sci. 2 (1):1–7. doi:10.1038/s41612-019-0081-9.
  • Cohen, L., M. I. Quant, and D. J. Donaldson. 2020. Real-time measurements of PH changes in single, acoustically levitated droplets due to atmospheric multiphase chemistry. ACS Earth Space Chem. 4 (6):854–61. doi:10.1021/acsearthspacechem.0c00041.
  • Dahneke, B. 1971. The capture of aerosol particles by surfaces. J. Colloid Interface Sci. 37 (2):342–53. doi:10.1016/0021-9797(71)90302-X.
  • Dallemagne, M. A., X. Y. Huang, and N. C. Eddingsaas. 2016. Variation in PH of model secondary organic aerosol during liquid–liquid phase separation. J. Phys. Chem. A 120 (18):2868–76. doi:10.1021/acs.jpca.6b00275.
  • Dang, C., M. Segal-Rozenhaimer, H. Che, L. Zhang, P. Formenti, J. Taylor, A. Dobracki, S. Purdue, P.-S. Wong, A. Nenes, et al. 2022. Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: A TEM single-particle analysis. Atmos. Chem. Phys. 22 (14):9389–412. doi:10.5194/acp-22-9389-2022.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol. Sci. Technol. 38 (12):1185–205. doi:10.1080/027868290903907.
  • Freedman, M. A., K. J. Baustian, M. E. Wise, and M. A. Tolbert. 2010. Characterizing the morphology of organic aerosols at ambient temperature and pressure. Anal. Chem. 82 (19):7965–72. doi:10.1021/ac101437w.
  • Freedman, M. A. 2017. Phase separation in organic aerosol. Chem. Soc. Rev. 46 (24):7694–705. doi:10.1039/C6CS00783J.
  • Fu, H., M. Zhang, W. Li, J. Chen, and W. Wang. 2011. Morphology, composition and mixing state of individual carbonaceous aerosol in Urban Shanghai. Atmos. Chem. Phys. Discuss. 11:20973–11. doi:10.5194/acpd-11-20973-2011.
  • Gorkowski, K., N. M. Donahue, and R. C. Sullivan. 2020. Aerosol optical tweezers constrain the morphology evolution of liquid-liquid phase-separated atmospheric particles. Chemistry 6 (1):204–20. doi:10.1016/j.chempr.2019.10.018.
  • Higgins, D. N., M. S. Taylor, J. M. Krasnomowitz, and M. V. Johnston. 2022. Growth rate dependence of secondary organic aerosol on seed particle size, composition, and phase. ACS Earth Space Chem. 6 (9):2158–66. doi:10.1021/acsearthspacechem.2c00049.
  • Kerecman, D. E., M. J. Apsokardu, S. L. Talledo, M. S. Taylor, D. N. Haugh, Y. Zhang, and M. V. Johnston. 2021. Online characterization of organic aerosol by condensational growth into aqueous droplets coupled with droplet-assisted ionization. Anal. Chem. 93 (5):2793–801. doi:10.1021/acs.analchem.0c03697.
  • Krasnomowitz, J. M., M. J. Apsokardu, C. M. Stangl, L. Tiszenkel, Q. Ouyang, S. Lee, and M. V. Johnston. 2019. Growth of Aitken mode ammonium sulfate particles by α-pinene ozonolysis. Aerosol Sci. Technol. 53 (4):406–18. doi:10.1080/02786826.2019.1568381.
  • Lall, A. A., and S. K. Friedlander. 2006. On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. theoretical analysis. J. Aerosol Sci. 37 (3):260–71. doi:10.1016/j.jaerosci.2005.05.021.
  • Laskin, A., M. K. Gilles, D. A. Knopf, B. Wang, and S. China. 2016. Progress in the analysis of complex atmospheric particles. Annu. Rev. Anal. Chem. (Palo Alto, CA) 9 (1):117–43. doi:10.1146/annurev-anchem-071015-041521.
  • Laskina, O., H. S. Morris, J. R. Grandquist, A. D. Estillore, E. A. Stone, V. H. Grassian, and A. V. Tivanski. 2015. Substrate-deposited sea spray aerosol particles: Influence of analytical method, substrate, and storage conditions on particle size, phase, and morphology. Environ. Sci. Technol. 49 (22):13447–53. doi:10.1021/acs.est.5b02732.
  • Lee, H. D., C. P. Kaluarachchi, E. S. Hasenecz, J. Z. Zhu, E. Popa, E. A. Stone, and A. V. Tivanski. 2019. Effect of dry or wet substrate deposition on the organic volume fraction of core–shell aerosol particles. Atmos. Meas. Tech. 12 (3):2033–42. doi:10.5194/amt-12-2033-2019.
  • Lei, Z., N. E. Olson, Y. Zhang, Y. Chen, A. T. Lambe, J. Zhang, N. J. White, J. M. Atkin, M. M. Banaszak Holl, Z. Zhang, et al. 2022. Morphology and viscosity changes after reactive uptake of isoprene epoxydiols in submicrometer phase separated particles with secondary organic aerosol formed from different volatile organic compounds. ACS Earth Space Chem. 6 (4):871–82. doi:10.1021/acsearthspacechem.1c00156.
  • Li, W., X. Teng, X. Chen, L. Liu, L. Xu, J. Zhang, Y. Wang, Y. Zhang, and Z. Shi. 2021. Organic coating reduces hygroscopic growth of phase-separated aerosol particles. Environ. Sci. Technol. 55 (24):16339–46. doi:10.1021/acs.est.1c05901.
  • McMurry, P. H. 2000. A review of atmospheric aerosol measurements. Atmospheric. Environ. 34 (12–14):1959–99. doi:10.1016/S1352-2310(99)00455-0.
  • Mikhailov, E., S. Vlasenko, S. T. Martin, T. Koop, and U. Pöschl. 2009. Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 9 (24):9491–522. doi:10.5194/acp-9-9491-2009.
  • Morris, H. S., A. D. Estillore, O. Laskina, V. H. Grassian, and A. V. Tivanski. 2016. Quantifying the hygroscopic growth of individual submicrometer particles with atomic force microscopy. Anal. Chem. 88 (7):3647–54. doi:10.1021/acs.analchem.5b04349.
  • O’Brien, R. E., A. Neu, S. A. Epstein, A. C. MacMillan, B. Wang, S. T. Kelly, S. A. Nizkorodov, A. Laskin, R. C. Moffet, and M. K. Gilles. 2014. Physical properties of ambient and laboratory-generated secondary organic aerosol. Geophys. Res. Lett. 41 (12):4347–53. doi:10.1002/2014GL060219.
  • Olson, N. E., Z. Lei, R. L. Craig, Y. Zhang, Y. Chen, A. T. Lambe, Z. Zhang, A. Gold, J. D. Surratt, and A. P. Ault. 2019. Reactive uptake of isoprene epoxydiols increases the viscosity of the core of phase-separated aerosol particles. ACS Earth Space Chem. 3 (8):1402–14. doi:10.1021/acsearthspacechem.9b00138.
  • Ott, E. J. E., and M. A. Freedman. 2020. Inhibition of phase separation in aerosolized water-soluble polymer–polymer nanoparticles at small sizes and the effects of molecular weight. J. Phys. Chem. B 124 (34):7518–23. doi:10.1021/acs.jpcb.0c06535.
  • Ott, E. J. E., T. M. Kucinski, J. N. Dawson, and M. A. Freedman. 2021. Use of transmission electron microscopy for analysis of aerosol particles and strategies for imaging fragile particles. Anal. Chem. 93 (33):11347–56. doi:10.1021/acs.analchem.0c05225.
  • Park, K., D. Dutcher, M. Emery, J. Pagels, H. Sakurai, J. Scheckman, S. Qian, M. R. Stolzenburg, X. Wang, J. Yang, et al. 2008. Tandem measurements of aerosol properties—a review of mobility techniques with extensions. Aerosol Sci. Technol. 42 (10):801–16. doi:10.1080/02786820802339561.
  • Park, K., D. B. Kittelson, and P. H. McMurry. 2004. Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): Relationships to particle mass and mobility. Aerosol Sci. Technol. 38 (9):881–9. doi:10.1080/027868290505189.
  • Pósfai, M., and P. R. Buseck. 2010. Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci. 38 (1):17–43. doi:10.1146/annurev.earth.031208.100032.
  • Prather, K. A., C. D. Hatch, and V. H. Grassian. 2008. Analysis of atmospheric aerosols. Annu. Rev. Anal. Chem. (Palo Alto, CA) 1 (1):485–514. doi:10.1146/annurev.anchem.1.031207.113030.
  • Radney, J. G., R. You, X. Ma, J. M. Conny, M. R. Zachariah, J. T. Hodges, and C. D. Zangmeister. 2014. Dependence of soot optical properties on particle morphology: Measurements and model comparisons. Environ. Sci. Technol. 48 (6):3169–76. doi:10.1021/es4041804.
  • Ray, K. K., H. D. Lee, M. A. Gutierrez, F. J. Chang, and A. V. Tivanski. 2019. Correlating 3D morphology, phase state, and viscoelastic properties of individual substrate-deposited particles. Anal. Chem. 91 (12):7621–30. doi:10.1021/acs.analchem.9b00333.
  • Reid, J. P., A. K. Bertram, D. O. Topping, A. Laskin, S. T. Martin, M. D. Petters, F. D. Pope, and G. Rovelli. 2018. The viscosity of atmospherically relevant organic particles. Nat. Commun. 9 (1):956. doi:10.1038/s41467-018-03027-z.
  • Riemer, N., A. P. Ault, M. West, R. L. Craig, and J. H. Curtis. 2019. Aerosol mixing state: Measurements, modeling, and impacts. Rev. Geophys. 57 (2):187–249. doi:10.1029/2018RG000615.
  • Rogak, S. N., R. C. Flagan, and H. V. Nguyen. 1993. The mobility and structure of aerosol agglomerates. Aerosol Sci. Technol. 18 (1):25–47. doi:10.1080/02786829308959582.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. 3rd ed. Hoboken, NJ: Wiley.
  • Slade, J. H., A. P. Ault, A. T. Bui, J. C. Ditto, Z. Lei, A. L. Bondy, N. E. Olson, R. D. Cook, S. J. Desrochers, R. M. Harvey, et al. 2019. Bouncier particles at night: Biogenic secondary organic aerosol chemistry and sulfate drive diel variations in the aerosol phase in a mixed forest. Environ. Sci. Technol. 53 (9):4977–87. doi:10.1021/acs.est.8b07319.
  • Sobanska, S., G. Falgayrac, J. Rimetz-Planchon, E. Perdrix, C. Brémard, and J. Barbillat. 2014. Resolving the internal structure of individual atmospheric aerosol particle by the combination of atomic force microscopy, ESEM–EDX, Raman and ToF–SIMS imaging. Microchem. J. 114:89–98. doi:10.1016/j.microc.2013.12.007.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 42 (6):421–32. doi:10.1080/02786820802157823.
  • Tu, P., and M. V. Johnston. 2017. Particle size dependence of biogenic secondary organic aerosol molecular composition. Atmos. Chem. Phys. 17 (12):7593–603. doi:10.5194/acp-17-7593-2017.
  • Veghte, D. P., M. B. Altaf, and M. A. Freedman. 2013. Size dependence of the structure of organic aerosol. J. Am. Chem. Soc. 135 (43):16046–9. doi:10.1021/ja408903g.
  • Veghte, D. P., M. B. Altaf, J. D. Haines, and M. A. Freedman. 2016. Optical properties of non-absorbing mineral dust components and mixtures. Aerosol Sci. Technol. 50 (11):1239–52. doi:10.1080/02786826.2016.1225153.
  • Veghte, D. P., D. R. Bittner, and M. A. Freedman. 2014. Cryo-transmission electron microscopy imaging of the morphology of submicrometer aerosol containing organic acids and ammonium sulfate. Anal. Chem. 86 (5):2436–42. doi:10.1021/ac403279f.
  • Veghte, D. P., and M. A. Freedman. 2012. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles. Anal. Chem. 84 (21):9101–8. doi:10.1021/ac3017373.
  • Wise, M. E., S. T. Martin, L. M. Russell, and P. R. Buseck. 2008. Water uptake by NaCl particles prior to deliquescence and the phase rule. Aerosol Sci. Technol. 42 (4):281–94. doi:10.1080/02786820802047115.
  • You, Y., L. Renbaum-Wolff, M. Carreras-Sospedra, S. J. Hanna, N. Hiranuma, S. Kamal, M. L. Smith, X. Zhang, R. J. Weber, J. E. Shilling, et al. 2012. Images reveal that atmospheric particles can undergo liquid–liquid phase separations. Proc. Natl. Acad. Sci. U S A 109 (33):13188–93. doi:10.1073/pnas.1206414109.
  • Zardini, A. A., S. Sjogren, C. Marcolli, U. K. Krieger, M. Gysel, E. Weingartner, U. Baltensperger, and T. Peter. 2008. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles. Atmos. Chem. Phys. 8 (18):5589–601. doi:10.5194/acp-8-5589-2008.
  • Zhang, Y., Y. Chen, A. T. Lambe, N. E. Olson, Z. Lei, R. L. Craig, Z. Zhang, A. Gold, T. B. Onasch, J. T. Jayne, et al. 2018. Effect of the aerosol-phase state on secondary organic aerosol formation from the reactive uptake of isoprene-derived epoxydiols (IEPOX). Environ. Sci. Technol. Lett. 5 (3):167–74. doi:10.1021/acs.estlett.8b00044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.