441
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

High-accuracy effective density measurements of sodium methanesulfonate and aminium chloride nanoparticles using a particulate calibration standard

ORCID Icon, ORCID Icon & ORCID Icon
Pages 355-366 | Received 02 Aug 2022, Accepted 27 Jan 2023, Published online: 21 Feb 2023

References

  • Bahreini, R., M. D. Keywood, N. L. Ng, V. Varutbangkul, S. Gao, R. C. Flagan, J. H. Seinfeld, D. R. Worsnop, and J. L. Jimenez. 2005. Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer. Environ. Sci. Technol. 39 (15):5674–88. doi:10.1021/es048061a.
  • Belusso, A. C., M. L. Strack, G. P. M. da Silva, R. D. Soares, and P. B. Staudt. 2021. Vapor-liquid equilibrium pressure of ethanolamine hydrochloride, and vapor-solid equilibrium pressure of methylamine, pyridine, and trimethylamine hydrochlorides by thermogravimetric method. Braz. J. Chem. Eng. 38 (2):411–20. doi:10.1007/s43153-020-00086-y.
  • Dawson, M. L., M. E. Varner, V. Perraud, M. J. Ezell, J. Wilson, A. Zelenyuk, R. B. Gerber, and B. J. Finlayson-Pitts. 2014. Amine-amine exchange in aminium-methanesulfonate aerosols. J. Phys. Chem. C 118 (50):29431–40. doi:10.1021/jp506560w.
  • DeCarlo, P. F., J. G. Slowik, D. R. Worsnop, P. Davidovits, and J. L. Jimenez. 2004. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci. Tech. 38 (12):1185–205. doi:10.1080/027868290903907.
  • Docherty, K. S., M. Jaoui, E. Corse, J. L. Jimenez, J. H. Offenberg, M. Lewandowski, and T. E. Kleindienst. 2013. Collection efficiency of the aerosol mass spectrometer for chamber-generated secondary organic aerosols. Aerosol Sci. Tech. 47 (3):294–309. doi:10.1080/02786826.2012.752572.
  • Duelge, K., G. Mulholland, M. Zachariah, and V. A. Hackley. 2022. Accurate nanoparticle size determination using electrical mobility measurements in the step and scan modes. Aerosol Sci. Tech. 56 (12):1096–113. doi:10.1080/02786826.2022.2128986.
  • Erupe, M. E., A. Liberman-Martin, P. J. Silva, Q. G. J. Malloy, N. Yonis, D. R. Cocker, and K. L. Purvis-Roberts. 2010. Determination of methylamines and trimethylamine-N-oxide in particulate matter by non-suppressed ion chromatography. J. Chromatogr. A 1217 (13):2070–3. doi:10.1016/j.chroma.2010.01.066.
  • Feng, H., X. N. Ye, Y. X. Liu, Z. K. Wang, T. X. Gao, A. Y. Cheng, X. F. Wang, and J. M. Chen. 2020. Simultaneous determination of nine atmospheric amines and six inorganic ions by non-suppressed ion chromatography using acetonitrile and 18-crown-6 as eluent additive. J. Chromatogr. A 1624:461234. ARTN 461234. doi:10.1016/j.chroma.2020.461234.
  • Gaston, C. J., K. A. Pratt, X. Y. Qin, and K. A. Prather. 2010. Real-time detection and mixing state of methanesulfonate in single particles at an inland urban location during a phytoplankton bloom. Environ. Sci. Technol. 44 (5):1566–72. doi:10.1021/es902069d.
  • Geller, M., S. Biswas, and C. Sioutas. 2006. Determination of particle effective density in urban environments with a differential mobility analyzer and aerosol particle mass analyzer. Aerosol Sci. Tech. 40 (9):709–23. doi:10.1080/02786820600803925.
  • Glicker, H. S., M. J. Lawler, S. Chee, J. Resch, L. A. Garofalo, K. J. Mayer, K. A. Prather, D. K. Farmer, and J. N. Smith. 2022. Chemical composition of ultrafine sea spray aerosol during the Sea Spray Chemistry and Particle Evolution Experiment. Acs Earth Space Chem. 6 (7):1914–23. doi:10.1021/acsearthspacechem.2c00127.
  • Guo, L. Y., C. Peng, T. M. Zong, W. J. Gu, Q. X. Ma, Z. J. Wu, Z. Wang, X. Ding, M. Hu, X. M. Wang, et al. 2020. Comprehensive characterization of hygroscopic properties of methanesulfonates. Atmos Environ 224:117349. ARTN 117349, doi:10.1016/j.atmosenv.2020.117349.
  • Heal, M. R., P. Kumar, and R. M. Harrison. 2012. Particles, air quality, policy and health. Chem. Soc. Rev. 41 (19):6606–30. doi:10.1039/c2cs35076a.
  • Hendricks, S. 1928. V. The crystal structures of the monomethyl ammonium halides. Z. Fur Krist. - Cryst. Mater. 67 (1-6):106–18. doi:10.1524/zkri.1928.67.1.106.
  • Hodshire, A. L., P. Campuzano-Jost, J. K. Kodros, B. Croft, B. A. Nault, J. C. Schroder, J. L. Jimenez, and J. R. Pierce. 2019. The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmos. Chem. Phys. 19 (5):3137–60. doi:10.5194/acp-19-3137-2019.
  • Huang, S., L. Poulain, D. van Pinxteren, M. van Pinxteren, Z. J. Wu, H. Herrmann, and A. Wiedensohler. 2017. Latitudinal and seasonal distribution of particulate MSA over the Atlantic using a validated quantification method with HR-ToF-AMS. Environ. Sci. Technol. 51 (1):418–26. doi:10.1021/acs.est.6b03186.
  • Hughes, E. W., and W. N. Lipscomb. 1946. The crystal structure of methylammonium chloride. J. Am. Chem. Soc. 68 (10):1970–5. doi:10.1021/ja01214a029.
  • IPCC Climate Change. 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, United Kingdom and New York, NY, USA, 2391 pp.
  • Jimenez, J. L., R. Bahreini, D. R. Cocker, H. Zhuang, V. Varutbangkul, R. C. Flagan, J. H. Seinfeld, C. D. O'Dowd, and T. Hoffmann. 2003. New particle formation from photooxidation of diiodomethane (CH2I2). J. Geophys. Res.-Atmos. 108 (D10) Artn 4318:1–25. doi:10.1029/2002jd002452.
  • Johnson, T. J., J. P. R. Symonds, and J. S. Olfert. 2013. Mass-mobility measurements using a centrifugal particle mass analyzer and differential mobility spectrometer. Aerosol Sci. Tech. 47 (11):1215–25. doi:10.1080/02786826.2013.830692.
  • Kannosto, J., A. Virtanen, M. Lemmetty, J. M. Makela, J. Keskinen, H. Junninen, T. Hussein, P. Aalto, and M. Kulmala. 2008. Mode resolved density of atmosphreic aerosol particles. Atmos. Chem. Phys. 8 (17):5327–37. doi:10.5194/acp-8-5327-2008.
  • Kazemimanesh, M., M. M. Rahman, D. Duca, T. J. Johnson, A. Addad, G. Giannopoulos, C. Focsa, and A. M. Boies. 2022. A comparative study on effective density, shape factor, and volatile mixing of non-spherical particles using tandem aerodynamic diameter, mobility diameter, and mass measurements. J. Aerosol. Sci. 161:105930. ARTN 105930, doi:10.1016/j.jaerosci.2021.105930.
  • Kelly, W. P., and P. H. McMurry. 1992. Measurement of particle density by inertial classification of differential mobility analyzer generated monodisperse aerosols. Aerosol Sci. Tech. 17 (3):199–212. doi:10.1080/02786829208959571.
  • Kidd, C., V. Perraud, and B. J. Finlayson-Pitts. 2014. Surfactant-free latex spheres for size calibration of mobility particle sizers in atmospheric aerosol applications. Atmos. Environ. 82:56–9. doi:10.1016/j.atmosenv.2013.09.056.
  • Kinney, P. D., D. Y. H. Pui, G. W. Mulliolland, and N. P. Bryner. 1991. Use of the electrostatic classification method to size 0.1 um SRM particles – A feasibility study. J. Res. Natl. Inst. Stand. Technol. 96 (2):147–76. doi:10.6028/jres.096.006.
  • Knollenberg, R. G. 1989. The measurement of latex particle sizes using scattering ratios in the rayleigh-scattering size range. J. Aerosol Sci. 20 (3):331–45. doi:10.1016/0021-8502(89)90008-6.
  • Kolaitis, L. N., F. J. Bruynseels, R. E. Van Grieken, and M. O. Andreae. 1989. Determination of methanesulfonic-acid and non-sea-salt sulfate in single marine aerosol-particles. Environ. Sci. Technol. 23 (2):236–40. doi:10.1021/es00179a018.
  • Koo, C. H., O. Lee, and H. S. Shin. 1972. The crystal structure of monoethanolamine hydrochloride. J. Korean Chem. Soc. 16:6–12.
  • Kostenidou, E., R. K. Pathak, and S. N. Pandis. 2007. An algorithm for the calculation of secondary organic aerosol density combining AMS and SMPS data. Aerosol Sci Tech 41 (11):1002–10. doi:10.1080/02786820701666270.
  • Krempaska, N., K. Horňák, and J. Pernthaler. 2018. Spatiotemporal distribution and microbial assimilation of polyamines in a mesotrophic lake. Limnol. Oceanogr. 63 (2):816–32. doi:10.1002/lno.10672.
  • Kwong, K. C., M. M. Chim, E. H. Hoffmann, A. Tilgner, H. Herrmann, J. F. Davies, K. R. Wilson, and M. N. Chan. 2018. Chemical transformation of methanesulfonic acid and sodium methanesulfonate through heterogeneous OH oxidation. ACS Earth Space Chem. 2 (9):895–903. doi:10.1021/acsearthspacechem.8b00072.
  • Lawler, M. J., M. P. Rissanen, M. Ehn, R. L. Mauldin, N. Sarnela, M. Sipila, and J. N. Smith. 2018. Evidence for diverse biogeochemical drivers of boreal forest new particle formation. Geophys. Res. Lett. 45 (4):2038–46. doi:10.1002/2017GL076394.
  • Lelieveld, J. 2017. Clean air in the Anthropocene. Faraday Discuss. 200:693–703. doi:10.1039/c7fd90032e.
  • Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525 (7569):367–71. doi:10.1038/nature15371.
  • Liu, Y., and A. Laskin. 2009. Hygroscopic properties of CH3SO3Na, CH3SO3. NH4, (CH3SO3)2Mg, and (CH3SO3)2Ca particles studied by micro-FTIR spectroscopy. J. Phys. Chem. A 113 (8):1531–8. doi:10.1021/jp8079149.
  • Malloy, Q. G. J., S. Nakao, L. Qi, R. Austin, C. Stothers, H. Hagino, and D. R. Cocker. 2009. Real-time aerosol density determination utilizing a modified scanning mobility particle sizer aerosol particle mass analyzer system. Aerosol Sci. Tech. 43 (7):673–8. doi:10.1080/02786820902832960.
  • McMurry, P. H., X. Wang, K. Park, and K. Ehara. 2002. The relationship between mass and mobility for atmospheric particles: A new technique for measuring particle density. Aerosol Sci. Tech. 36 (2):227–38. doi:10.1080/027868202753504083.
  • Moreno-Rios, A. L., L. P. Tejeda-Benitez, and C. F. Bustillo-Lecompte. 2022. Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geosci Front 13 (1):101147. ARTN 101147. doi:10.1016/j.gsf.2021.101147.
  • Muller, C., Y. Iinuma, J. Karstensen, D. van Pinxteren, S. Lehmann, T. Gnauk, and H. Herrmann. 2009. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmos. Chem. Phys. 9 (24):9587–97. doi:10.5194/acp-9-9587-2009.
  • National Center for Biotechnology Information PubChem Compound Summary for CID 75565, 1,3-Bis(3-phenoxyphenoxy)benzene. 2022. https://pubchem.ncbi.nlm.nih.gov/compound/1_3-Bis_3-phenoxyphenoxy_benzene (last visited Nov. 25).
  • Olfert, J. S., K. S. J. Reavell, M. G. Rushton, and N. Collings. 2006. The experimental transfer function of the Couette centrifugal particle mass analyzer. J. Aerosol Sci. 37 (12):1840–52. doi:10.1016/j.jaerosci.2006.07.007.
  • Olfert, J. S., J. P. R. Symonds, and N. Collings. 2007. The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. J. Aerosol Sci. 38 (1):69–82. doi:10.1016/j.jaerosci.2006.10.002.
  • Pagels, J., A. F. Khalizov, P. H. McMurry, and R. Y. Zhang. 2009. Processing of soot by controlled sulphuric acid and water condensation mass and mobility relationship. Aerosol Sci. Tech. 43 (7):629–40. doi:10.1080/02786820902810685.
  • Park, K., J.-S. Kim, and A. L. Miller. 2009. A study on effects of size and structure on hygroscopicity of nanoparticles using tandem differential mobility analyzer and TEM. J. Nanopart. Res. 11 (1):175–83. doi:10.1007/s11051-008-9462-4.
  • Peng, C. G., and C. K. Chan. 2001. The water cycles of water-soluble organic salts of atmospheric importance. Atmos. Environ. 35 (7):1183–92. doi:10.1016/S1352-2310(00)00426-X.
  • Peng, L., Z. R. Li, G. H. Zhang, X. H. Bi, W. W. Hu, M. J. Tang, X. M. Wang, P. Peng, and G. Y. Sheng. 2021. A review of measurement techniques for aerosol effective density. Sci. Total Environ. 778:146248. doi:10.1016/j.scitotenv.2021.146248.
  • Perraud, V., X. X. Li, J. K. Jiang, B. J. Finlayson-Pitts, and J. N. Smith. 2020. Size-resolved chemical composition of sub-20 nm particles from methanesulfonic acid reactions with methylamine and ammonia. ACS Earth Space Chem. 4 (7):1182–94. doi:10.1021/acsearthspacechem.0c00120.
  • Phinney, L., W. R. Leaitch, U. Lohmann, H. Boudries, D. R. Worsnop, J. T. Jayne, D. Toom-Sauntry, M. Wadleigh, S. Sharma, and N. Shantz. 2006. Characterization of the aerosol over the sub-arctic north east Pacific Ocean. Deep-Sea Res. Pt Ii 53 (20-22):2410–33. doi:10.1016/j.dsr2.2006.05.044.
  • Pitz, M., O. Schmid, J. Heinrich, W. Birmili, J. Maguhn, R. Zimmermann, H.-R. Wichmann, A. Peters, and J. Cyrys. 2008. Seasonal and diurnal variation of PM2.5 apparent particle density in urvan air in Augsburg, Germany. Environ. Sci. Technol. 42 (14):5087–93. doi:10.1021/es7028735.
  • Pope, C. A., and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 56 (6):709–42. doi:10.1080/10473289.2006.10464545.
  • Pratt, K. A., and K. A. Prather. 2012. Mass spectrometry of atmospheric aerosols - Recent developments and applications. Part II: On-line mass spectrometry techniques. Mass Spectrom. Rev. 31 (1):17–48. doi:10.1002/mas.20330.
  • Qiu, C., and R. Y. Zhang. 2012. Physiochemical properties of alkylaminium sulfates: hygroscopicity, thermostability, and density. Environ. Sci. Technol. 46 (8):4474–80. doi:10.1021/es3004377.
  • Rissler, J., E. Z. Nordin, A. C. Eriksson, P. T. Nilsson, M. Frosch, M. K. Sporre, A. Wierzbicka, B. Svenningsson, J. Londahl, M. E. Messing, et al. 2014. Effective density and mixing state of aerosol particles in a near-traffic urban environment. Environ. Sci. Technol. 48 (11):6300–8. doi:10.1021/es5000353.
  • Ristimaki, J., A. Virtanen, M. Marjamaki, A. Rostedt, and J. Keskinen. 2002. On-line measurement of size distribution and effective density of submicron aerosol particles. J. Aerosol Sci. 33 (11):1541–57. doi:10.1016/S0021-8502(02)00106-4.
  • Rumble, J. R. 2022. CRC handbook of chemistry and physics. 103rd ed. (Internet Version 2022). Boca Raton, FL: CRC Press/Taylor & Francis.
  • Sang, S. W., C. Chu, T. C. Zhang, H. Chen, and X. R. Yang. 2022. The global burden of disease attributable to ambient fine particulate matter in 204 countries and territories, 1990-2019: A systematic analysis of the Global Burden of Disease Study 2019. Ecotoxicol. Environ. Saf. 238:113588. doi:10.1016/j.ecoenv.2022.113588.
  • Schmale, J., J. Schneider, E. Nemitz, Y. S. Tang, U. Dragosits, T. D. Blackall, P. N. Trathan, G. J. Phillips, M. Sutton, and C. F. Braban. 2013. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources. Atmos. Chem. Phys. 13 (17):8669–94. 105194/acp-13-8669-2013 doi:10.5194/acp-13-8669-2013.
  • Scientific Instrument Services (SIS). Compound summary for Santovac(R) 5 ultra vacuum pump fluid. https://www.sisweb.com/vacuum/sis/satovc5.htm, last viewed on Nov. 25, 2022.
  • Shen, W. C., L. L. Ren, Y. Zhao, L. Y. Zhou, L. Dai, X. L. Ge, S. F. Kong, Q. Yan, H. H. Xu, Y. J. Jiang, et al. 2017. C1-C2 alkyl aminiums in urban aerosols: Insights from ambient and fuel combustion emission measurements in the Yangtze River Delta region of China. Environ. Pollut. 230:12–21. doi:10.1016/j.envpol.2017.06.034.
  • Singh, A., W. J. Bloss, and F. D. Pope. 2017. 60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility. Atmos. Chem. Phys. 17 (3):2085–101. doi:10.5194/acp-17-2085-2017.
  • Sipkens, T. A., U. Trivanovic, A. Naseri, O. W. Bello, A. Baldelli, M. Kazemimanesh, A. K. Bertram, L. Kostiuk, J. C. Corbin, J. S. Olfert, et al. 2021. Using two-dimensional distributions to inform the mixing state of soot and salt particles produced in gas flares. J. Aerosol Sci. 158:105826. doi:10.1016/j.jaerosci.2021.105826.
  • Smith, J. N., K. C. Barsanti, H. R. Friedli, M. Ehn, M. Kulmala, D. R. Collins, J. H. Scheckman, B. J. Williams, and P. H. McMurry. 2010. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl. Acad. Sci. U S A 107 (15):6634–9. doi:10.1073/pnas.0912127107.
  • Smith, J. N., D. C. Draper, S. Chee, M. Dam, H. Glicker, D. Myers, A. E. Thomas, M. J. Lawler, and N. Myllys. 2021. Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition. J. Aerosol Sci. 153:105733. doi:10.1016/j.jaerosci.2020.105733.
  • Song, Y., X. Y. Pei, H. C. Liu, J. J. Zhou, and Z. B. Wang. 2022. Characterization of tandem aerosol classifiers for selecting particles: Implication for eliminating the multiple charging effect. Atmos. Meas. Tech. 15 (11):3513–26. doi:10.5194/amt-15-3513-2022.
  • Stein, S. W., B. J. Turpin, X. P. Cai, C. P. F. Huang, and P. H. Mcmurry. 1994. Measurements of relative humidity-dependent bounce and density for atmospheric particles using the DMA-impactor technique. Atmos. Environ. 28 (10):1739–46. Doi doi:10.1016/1352-2310(94)90136-8.
  • Sullivan, A. P., K. B. Benedict, C. M. Carrico, M. K. Dubey, B. A. Schichtel, and J. C. Collett. 2020. A quantitative method to measure and speciate amines in ambient aerosol samples. Atmosphere-Basel 11 (8):808. ARTN 808, doi:10.3390/atmos11080808.
  • Symonds, J. P. R., K. S. Reavell, and J. S. Olfert. 2013. The CPMA-electrometer system - A suspended particle mass concentration standard. Aerosol Sci Tech 47 (8):I–Iv. doi:10.1080/02786826.2013.801547.
  • Tajima, N., H. Sakurai, N. Fukushima, and K. Ehara. 2013. Design considerations and performance evaluation of a compact aerosol particle mass analyzer. Aerosol Sci. Tech. 47 (10):1152–62. doi:10.1080/02786826.2013.827323.
  • Tang, M. J., L. Y. Guo, Y. Bai, R. J. Huang, Z. Wu, Z. Wang, G. H. Zhang, X. Ding, M. Hu, and X. M. Wang. 2019. Impacts of methanesulfonate on the cloud condensation nucleation activity of sea salt aerosol. Atmos. Environ. 201:13–7. doi:10.1016/j.atmosenv.2018.12.034.
  • Tavakoli, F., and J. S. Olfert. 2014. Determination of particle mass, effective density, mass-mobility exponent, and dynamic shape factor using an aerodynamic aerosol classifier and a differential mobility analyzer in tandem. J. Aerosol Sci. 75:35–42. doi:10.1016/j.jaerosci.2014.04.010.
  • Titosky, J., A. Momenimovahed, J. C. Corbin, K. Thomson, G. Smallwood, and J. S. Olfert. 2019. Repeatability and intermediate precision of a mass concentration calibration system. Aerosol Sci. Tech. 53 (6):701–11. doi:10.1080/02786826.2019.1592103.
  • VWR. https://ie.vwr.com/store/product/7193525/1-4-diaminobutane-dihydrochloride-sigma-aldrich.
  • Wang, S., S. Crumeyrolle, W. Zhao, X. Xu, B. Fang, Y. Derimian, C. R. Chen, W. Chen, W. Zhang, Y. Huang, et al. 2021. Real-time retrieval of aerosol chemical composition using effective density and the imaginary part of complex refractive index. Atmos. Environ. 245:117959. doi:10.1016/j.atmosenv.2020.117959.
  • Wang, Z., S. M. King, E. Freney, T. Rosenoern, M. L. Smith, Q. Chen, M. Kuwata, E. R. Lewis, U. Poschl, W. Wang, et al. 2010. The dynamic shape factor of sodium chloride nanoparticles as regulated by drying rate. Aerosol Sci. Tech. 44 (11):939–53. doi:10.1080/02786826.2010.503204.
  • Wingen, L. M., and B. J. Finlayson-Pitts. 2019. Probing surfaces of atmospherically relevant organic particles by Easy Ambient Sonic-Spray Ionization Mass Spectrometry (EASI-MS). Chem. Sci. 10 (3):884–97. doi:10.1039/c8sc03851a.
  • Xu, W., J. Ovadnevaite, K. N. Fossum, C. Lin, R.-J. Huang, C. O'Dowd, and D. Ceburnis. 2020. Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: Marine and continental air masses. Atmos. Chem. Phys. 20 (6):3777–91. doi:10.5194/acp-20-3777-2020.
  • Yao, Q., A. Asa-Awuku, C. D. Zangmeister, and J. G. Radney. 2020. Comparison of three essential sub-micrometer aerosol measurements: Mass, size and shape. Aerosol Sci. Tech. 54 (10):1197–209. doi:10.1080/02786826.2020.1763248.
  • Zelenyuk, A., Y. Cai, L. Chieffo, and D. Imre. 2005. High precision density measurements of single particles: The density of metastable phases. Aerosol Sci. Tech. 39 (10):972–86. doi:10.1080/02786820500380206.
  • Zelenyuk, A., Y. Cai, and D. Imre. 2006. From agglomerates of spheres to irregularly shaped particles: Determination of dynamic shape factors from measurements of mobility and vacuum aerodynamic diameters. Aerosol Sci. Tech. 40 (3):197–217. doi:10.1080/02786820500529406.
  • Zhou, S. Q., J. Lin, X. F. Qin, Y. Chen, and C. R. Deng. 2018. Determination of atmospheric alkylamines by ion chromatography using 18-crown-6 as mobile phase additive. J. Chromatogr. A. 1563:154–61. doi:10.1016/j.chroma.2018.05.074.
  • Zhou, Y. Q., N. Ma, Q. Q. Wang, Z. B. Wang, C. R. Chen, J. C. Tao, J. Hong, L. Peng, Y. He, L. H. Xie, et al. 2022. Bimodal distribution of size-resolved particle effective density: Results from a short campaign in a rural environment over the North China Plain. Atmos. Chem. Phys. 22 (3):2029–47. doi:10.5194/acp-22-2029-2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.