788
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced survival fractions of UV-irradiated spores in clusters on a surface in air: Measured and mathematically modeled results at 254-nm

ORCID Icon, ORCID Icon, , , , , & show all
Pages 487-507 | Received 01 Nov 2022, Accepted 11 Feb 2023, Published online: 31 Mar 2023

References

  • Bateman, J. B., C. L. Stevens, W. B. Mercer, and E. L. Carstensen. 1962. Relative humidity and the killing of bacteria: The variation of cellular water content with external relative humidity or osmolality. J. Gen. Microbiol. 29:207–19. doi:10.1099/00221287-29-2-207.
  • Bender, E. 2022. Safety is in the air. Nature 610 (7933):S46–S47. doi:10.1038/d41586-022-03360-w.
  • Bennett, B. D., E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz. 2009. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 5 (8):593–9. doi:10.1038/nchembio.186.
  • Bicer, E. M. 2014. Compositional characterisation of human respiratory tract lining fluids for the design of disease specific simulants. PhD dissertation, Kings College. London. Ch. 6, Tables 6.1 to 6.3 and Table D.1. https://kclpure.kcl.ac.uk/portal/.
  • Blanchard, D. C., and L. Syzdek. 1970. Mechanism for water-to-air transfer and concentration of bacteria. Science 170 (3958):626–8. doi:10.1126/science.170.3958.626.
  • Blanchard, D. C., and L. D. Syzdek. 1982. Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles. Appl. Environ. Microbiol. 43 (5):1001–5. doi:10.1128/aem.43.5.1001-1005.1982.
  • Bottiger, J. R., P. J. Deluca, E. W. Stuebing, and D. R. Vanreenaen. 1998. An ink jet aerosol generator. J. Aerosol. Sci. 29 (Suppl. 1):S965. doi:10.1016/S0021-8502(98)90665-6.
  • Bourouiba, L. 2021. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53:473–508. doi:10.1146/annurev-fluid-060220-113712.
  • Bressuire-Isoard, C., V. Broussolle, and F. Carlin. 2018. Sporulation environment influences spore properties in Bacillus: Evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol. Rev. 42 (5):614–26. doi:10.1093/femsre/fuy021.
  • Buonanno, M., B. Ponnaiya, D. Welch, M. Stanislauskas, G. Randers-Pehrson, L. Smilenov, F. D. Lowy, D. M. Owens, and D. J. Brenner. 2017. Germicidal efficacy and mammalian skin safety of 222-nm UV light. Radiat. Res. 187:493–501. doi:10.1667/RR0010CC.1.
  • Buonanno, M., D. Welch, I. Shuryak, and D. J. Brenner. 2020. Far-UVC light (222nm) efficiently and safely inactivates airborne human coronaviruses. Sci. Rep. 10 (1):10285. doi:10.1038/s41598-020-67211-2.
  • Carrera, M., R. O. Zandomeni, J. Fitzgibbon, and J.-L. Sagripanti. 2007. Difference between the spore sizes of Bacillus anthracis and other Bacillus species. J. Appl. Microbiol. 102 (2):303–12. doi:10.1111/j.1365-2672.2006.03111.x.
  • Carrera, M., R. O. Zandomeni, and J.-L. Sagripanti. 2008. Wet and dry density of Bacillus anthracis and other Bacillus species. J. Appl. Microbiol. 105 (1):68–77. doi:10.1111/j.1365-2672.2008.03758.x.
  • Chowdhury, D. Q., P. W. Barber, and S. C. Hill. 1992. Energy-density distribution inside large non-absorbing spheres by using Mie theory and geometrical optics. Appl. Opt. 31 (18):3518–23. doi:10.1364/AO.31.003518.
  • Colburn, H. A., D. S. Wunschel, K. C. Antolick, A. M. Melville, and N. B. Valentine. 2011. The effect of growth medium on B. anthracis Sterne spore carbohydrate content. J. Microbiol. Methods. 85 (3):183–9. doi:10.1016/j.mimet.2011.02.015.
  • D'Alessandro, V., M. Falone, L. Giammichele, and R. Ricci. 2021. Eulerian-Lagrangian modeling of cough droplets irradiated by ultraviolet-C light in relation to SARS-CoV-2 transmission. Phys. Fluids (1994) 33 (3):031905.doi:10.1063/5.0039224.
  • Donev, A., I. Cisse, D. Sachs, E. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin. 2004. Improving the density of jammed disordered packings using ellipsoids. Science 303 (5660):990–3. doi:10.1126/science.1093010.
  • Donnellan, J. E., and R. B. Setlow. 1965. Thymine photoproducts but not thymine dimers found in ultraviolet-irradiated bacterial spores. Science 149 (3681):308–10. doi:10.1126/science.149.3681.308.
  • Doughty, D. C., S. C. Hill, and D. W. Mackowski. 2021. Viruses such as SARS-CoV-2 can be partially shielded from UV radiation when in particles generated by sneezing or coughing: Numerical simulations. J. Quant. Spectrosc. Radiat. Transf. 262:107489. doi:10.1016/j.jqsrt.2020.107489.
  • Eadie, E., W. Hiwar, L. Fletcher, E. Tidswell, P. O'Mahoney, M. Buonanno, D. Welch, C. S. Adamson, D. J. Brenner, C. Noakes, et al. 2022. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber. Sci. Rep. 12 (1):4373. doi:10.1038/s41598-022-08462-z.
  • Elasri, M. O., and R. V. Miller. 1999. Study of the response of a biofilm bacterial community to UV radiation. Appl. Environ. Microbiol. 65 (5):2025–31. doi:10.1128/AEM.65.5.2025-2031.1999.
  • Eversole, J. D., C. S. Scotto, M. B. Hart, J. Czege, J. S. Kesavan, V. K. Rastogi, D. R. McGrady, T. Ingersoll, J. B. Cabalo, S. C. Hill, et al. 2023. Prediction of aerosol viability from experiments on surfaces (PAVES): Program summary report. NRL Formal Report, Naval Research Laboratory: Washington, DC, submitted Aug. 31, 2023, 166 pp.
  • Fisher, E. M., A. W. Richardson, S. D. Harpest, K. C. Hofacre, and R. E. Shaffer. 2012. Reaerosolization of MS2 bacteriophage from an N95 filtering facepiece respirator by simulated coughing. Ann. Occup. Hyg. 56 (3):315–25. doi:10.1093/annhyg/mer101.
  • Giorno, R., J. Bozue, C. Cote, T. Wenzel, K.-S. Moody, M. Mallozzi, M. Ryan, R. Wang, R. Zielke, J. R. Maddock, et al. 2007. Morphogenesis of the Bacillus anthracis spore. J. Bacteriol. 189 (3):691–705. doi:10.1128/JB.00921-06.
  • Greenberg, D. L., J. D. Busch, P. Keim, and D. M. Wagner. 2010. Identifying experimental surrogates for Bacillus anthracis spores: A review. Investig. Genet. 1 (1):4. doi:10.1186/2041-2223-1-4.
  • Gregson, F. K. A., S. Sheikh, J. Archer, H. E. Symons, J. S. Walker, A. E. Haddrell, C. M. Orton, F. W. Hamilton, J. M. Brown, B. R. Bzdek, et al. 2022. Analytical challenges when sampling and characterizing exhaled aerosol. Aerosol Sci. Technol. 56:160–75. doi:10.1080/02786826.2021.1990207.
  • Handler, F. A. 2016. Modeling ultraviolet dose-response of Bacillus spore clusters in air. Aerosol Sci. Technol. 50:148–59. doi:10.1080/02786826.2015.1137556.
  • Handler, F. A., and J. M. Edmonds. 2015. Quantitative analysis of effects of UV exposure and spore cluster size on deposition and inhalation hazards of Bacillus spores. Aerosol Sci. Technol. 49:1121–30. doi:10.1080/02786826.2015.1102857.
  • Hauck-Taburski, J., A. Rosenthal, C. Iaconnelli, J.-M. Perrier-Cornet, and P. Gervais. 2019. Inactivation of dried spores of Bacillus subtilis 168 by a treatment combining high temperature and pressure. Int. J. Food Microbiol. 295:1–7. doi:10.1016/j.ijfoodmicro.2019.01.017.
  • Hijnen, W. A. M., E. F. Beerendonk, and G. J. Medema. 2006. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res. 40 (1):3–22. doi:10.1016/j.watres.2005.10.030.
  • Hill, S. C., D. C. Doughty, and D. W. Mackowski. 2022. Absorption of ultraviolet radiation in bacterial spores in clusters in air and on surfaces: Model calculations using the multi-sphere T-matrix method. J. Quant. Spectrosc. Radiat. Transf. 293:108383. doi:10.1016/j.jqsrt.2022.108383.
  • Hill, S. C., D. C. Doughty, Y.-L. Pan, C. Williamson, J. L. Santarpia, and H. H. Hill. 2014. Fluorescence of bioaerosols: Mathematical model including primary fluorescing and absorbing molecules in bacteria: Errata. Opt. Express 22:22817–9. doi:10.1364/OE.22.022817.
  • Hill, S. C., D. W. Mackowski, and D. C. Doughty. 2021. Shielding of viruses such as SARS-CoV-2 from ultraviolet radiation in particles generated by sneezing or coughing: Numerical simulations of survival fractions. J. Occup. Environ. Hyg. 18 (8):394–408. doi:10.1080/15459624.2021.1939877.
  • Hill, S. C., Y.-L. Pan, C. Williamson, J. L. Santarpia, and H. H. Hill. 2013. Fluorescence of bioaerosols: Mathematical model including primary fluorescing and absorbing molecules in bacteria. Opt. Express. 21 (19):22285–313. doi:10.1364/OE.21.022285.
  • Hill, S. C., C. C. Williamson, D. C. Doughty, Y.-L. Pan, J. L. Santarpia, and H. H. Hill. 2015. Size-dependent fluorescence of bioaerosols: Mathematical model using fluorescing and absorbing molecules in bacteria. J. Quant. Spectrosc. Radiat. Transf. 157:54–70. doi:10.1016/j.jqsrt.2015.01.011.
  • Johnson, G. R., and L. Morawska. 2009. The mechanism of breath aerosol formation. J. Aerosol Med. Pulm. Drug Deliv. 22 (3):229–37. doi:10.1089/jamp.2008.0720.
  • Joung, Y. S., and C. R. Buie. 2015. Aerosol generation by raindrop impact on soil. Nat. Commun. 6:6083. doi:10.1038/ncomms7083.
  • Joung, Y. S., Z. F. Ge, and C. R. Buie. 2017. Bioaerosol generation by raindrops on soil. Nat. Commun. 8:14668. doi:10.1038/ncomms14668.
  • Kesavan, J., S. J. R. Bottiger, D. R. Schepers, and A. R. McFarland. 2014a. Comparison of particle number counts measured with an ink jet aerosol generator and an aerodynamic particle sizer. Aerosol Sci. Technol. 48 (2):219–27. doi:10.1080/02786826.2013.868594.
  • Kesavan, J. S., P. D. Humphreys, J. R. Bottiger, E. R. Valdes, V. K. Rastogi, and C. K. Knox. 2017. Deposition method, relative humidity, and surface property effects of bacterial spore reaerosolization via pulsed air jet. Aerosol Sci. Technol. 51 (9):1027–34. doi:10.1080/02786826.2017.1335389.
  • Kesavan, J., D. Schepers, J. Bottiger, and J. Edmonds. 2014b. UV-C decontamination of aerosolized and surface-bound single spores and bioclusters. Aerosol Sci. Technol. 48 (4):450–7. doi:10.1080/02786826.2014.889276.
  • Kim, D.-K., and D.-H. Kang. 2018. UVC LED irradiation effectively inactivates aerosolized viruses, bacteria, and fungi in a chamber-type air disinfection system. Appl. Environ. Microbiol. 84 (17):e00944. doi:10.1128/AEM.00944-18.
  • Kowalski, W. 2009. Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. New York: Springer. doi:10.1007/978-3-642-01999-9.
  • Kowalski, W. J., W. P. Bahnfleth, M. Raguse, and R. Moeller. 2020. The cluster model of ultraviolet disinfection explains tailing kinetics. J. Appl. Microbiol. 128 (4):1003–14. doi:10.1111/jam.14527.
  • Krauter, P., and A. Biermann. 2007. Reaerosolization of fluidized spores in ventilation systems. Appl. Environ. Microbiol. 73 (7):2165–72. doi:10.1128/AEM.02289-06.
  • Kujundzic, E., M. Hernandez, and S. L. Miller. 2007. Ultraviolet germicidal irradiation inactivation of airborne fungal spores and bacteria in upper-room air and HVAC in-duct configurations. J. Environ. Eng. Sci. 6 (1):1–9. doi:10.1139/s06-039.
  • Lai, J., K. K. Coleman, S. H. S. Tai, J. German, F. Hong, B. Albert, Y. Esparza, A. K. Srikakulapu, M. Schanz, I. S. Maldonado, et al. 2022. Exhaled breath aerosol shedding of highly transmissible versus prior severe acute respiratory syndrome coronavirus 2 variants. Clin. Infect. Dis. 76:786–94. doi:10.1093/cid/ciac846.
  • Layshock, J. A., B. Pearson, K. Crockett, M. J. Brown, S. Van Cuyk, B. W. Daniel, and K. M. Omberg. 2012. Reaerosolization of Bacillus spp. in outdoor environments: A review of the experimental literature. Biosecur. Bioterror. 10 (3):299–303. doi:10.1089/bsp.2012.0026.
  • Lehmann, D., M. Sladek, M. Khemmani, T. J. Boone, E. Rees, and A. Driks. 2022. Role of novel polysaccharide layers in assembly of the exosporium, the outermost protein layer of the Bacillus anthracis spore. Mol. Microbiol. 118 (3):258–77. doi:10.1111/mmi.14966.
  • Lighthart, B., B. T. Shaffer, B. Marthi, and L. M. Ganio. 1993. Artificial wind-gust liberation of microbial bioaerosols previously deposited on plants. Aerobiologia 9 (2–3):189–96. doi:10.1007/BF02136140.
  • Liu, H., N. H. Bergman, B. Thomason, S. Shallom, A. Hazen, J. Crossno, D. A. Rasko, J. Ravel, T. D. Read, S. N. Peterson, et al. 2004. Formation and composition of the Bacillus anthracis endospore. J. Bacteriol. 186 (1):164–78. doi:10.1128/JB.186.1.164–178.2004.
  • Lombini, M., E. Diolaiti, A. De Rosa, L. Lessio, G. Pareschi, A. Bianco, F. Cortecchia, M. Fiorini, G. Fiorini, G. Malaguti, et al. 2021. Design of optical cavity for air sanification through ultraviolet germicidal irradiation. Opt. Express 29 (12):18688–704. doi:10.1364/OE.422437.
  • Mackowski, D. W. 2008. Exact solution for the scattering and absorption properties of sphere clusters on a plane surface. J. Quant. Spectrosc. Radiat. Transf. 109 (5):770–88. doi:10.1016/j.jqsrt.2007.08.024.
  • Mackowski, D. W. 2014. A general superposition solution for electromagnetic scattering by multiple spherical domains of optically active media. J. Quant. Spectrosc. Radiat. Transf. 133:264–70. doi:10.1016/j.jqsrt.2013.08.012.
  • Mackowski, D. W. 2022. The extension of the Multiple Sphere T Matrix code to include multiple plane boundaries and 2-D periodic systems. J. Quant. Spectrosc. Radiat. Transf. 290:108292. doi:10.1016/j.jqsrt.2022.108292.
  • Mackowski, D. W., and M. I. Mishchenko. 1996. Calculation of the T matrix and the scattering matrix for ensembles of spheres. J. Opt. Soc. Am. A 13 (11):2266–78. doi:10.1364/JOSAA.13.002266.
  • Mackowski, D. W., and M. I. Mishchenko. 2011. A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transf. 112 (13):2182–92. doi:10.1016/j.jqsrt.2011.02.019.
  • Mackowski, D. W., and M. I. Mishchenko. 2013. Direct simulation of extinction in a slab of spherical particles. J. Quant. Spectrosc. Radiat. Transf. 123:103–112. doi:10.1016/j.jqsrt.2013.02.008.
  • Maeda, Y., T. Fujita, Y. Sugiura, and S. Koga. 1968. Physical properties of water in spores of Bacillus Megaterium. J. Gen. Appl. Microbiol. 14 (3):217–26. doi:10.2323/jgam.14.217.
  • Mamane, H., and K. G. Linden. 2006. Impact of particle aggregated microbes on UV disinfection. I: Evaluation of spore-clay aggregates and suspended spores. J. Environ. Eng. 132 (6):596–606. doi:10.1061/_ASCE_0733-9372_2006_132:6_596_.
  • Menetrez, M. Y., K. K. Foarde, T. R. Dean, and D. A. Betancourt. 2010. The effectiveness of UV irradiation on vegetative bacteria and fungi surface contamination. Chem. Eng. J. 157 (2–3):443–50. doi:10.1016/j.cej.2009.12.004.
  • Meselson, M., J. Guillemin, M. Hugh-Jones, A. Langmuir, I. Popova, A. Shelokov, and O. Yampolskaya. 1994. The Sverdlovsk anthrax outbreak of 1979. Science 266 (5188):1202–8. doi:10.1126/science.7973702.
  • Miller, S. L., W. W. Nazaroff, J. L. Jimenez, A. Boerstra, G. Buonanno, S. J. Dancer, J. Kurnitski, L. C. Marr, L. Morawska, and C. Noakes. 2021. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air. 31 (2):314–23. doi:10.1111/ina.12751.
  • Milton, D. K., M. P. Fabian, B. J. Cowling, M. L. Grantham, and J. J. McDevitt. 2013. Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLoS Pathog. 9 (3):e1003205. doi:10.1371/journal.ppat.1003205.
  • Moeller, R., G. Horneck, R. Facius, and E. Stackebrandt. 2005. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol. Ecol. 51 (2):231–6. doi:10.1016/j.femsec.2004.08.008.
  • Moeller, R., P. Setlow, G. Reitz, and W. L. Nicholson. 2009. Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Appl. Environ. Microbiol. 75 (16):5202–8. doi:10.1128/AEM.00789-09.
  • Morawska, L., J. Allen, W. Bahnfleth, P. M. Bluyssen, A. Boerstra, G. Buonanno, J. Cao, S. J. Dancer, A. Floto, F. Franchimon, et al. 2021. A paradigm shift to combat indoor respiratory infection. Science 372 (6543):689–91. doi:10.1126/science.abg202.
  • Morawska, L., G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. H. Chao, Y. Li, and D. Katoshevski. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol. Sci. 40 (3):256–69. doi:10.1016/j.jaerosci.2008.11.002.
  • Nardell, E. A. 2021. Air disinfection for airborne infection control with a focus on COVID-19: Why germicidal UV is essential. Photochem. Photobiol. 97 (3):493–7. doi:10.1111/php.13421.
  • Nasr, B., G. Ahmadi, A. R. Ferro, and S. Dhaniyala. 2019. Overview of mechanistic particle resuspension models: Comparison with compilation of experimental data. J. Adhes. Sci. Technol. 33 (24):2631–60. doi:10.1080/01694243.2019.1650989.
  • Neihof, R., J. K. Thompson, and V. R. Deitz. 1967. Sorption of water vapour and nitrogen gas by bacterial spores. Nature 216 (5122):1304–6. doi:10.1038/2161304a0.
  • Nguyen, M.‑T., H.-Q. Nguyen, H. Jang, S. Noh, Y. Sohn, K. Yee, H. Jung, and J. Kim. 2022. Effective inactivation of Bacillus atrophaeus spores and Escherichia coli on disposable face masks using ultraviolet laser irradiation. J. Anal. Sci. Technol. 13 (1):23. doi:10.1186/s40543-022-00332-7.
  • Nicholson, W. L., A. C. Schuerger, and P. Setlow. 2005. The solar UV environment and bacterial spore UV resistance: Considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat. Res. 571 (1–2):249–64. doi:10.1016/j.mrfmmm.2004.10.012.
  • Osman, S., Z. Peeters, M. T. La Duc, R. Mancinelli, P. Ehrenfreund, and K. Venkateswaran. 2008. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl. Environ. Microbiol. 74 (4):959–70. doi:10.1128/AEM.01973-07.
  • Pfennig, N. 1957. Free and hydrolysate amino acids in vegetative cells and spores of Bacillus subtilis. Arch. Mikrobiol 26:343–52.
  • Poster, D. L., M. Hardwick, C. C. Miller, M. A. Riley, W. W. S. I. Rodrigo, A. E. Vladar, J. D. Wright, C. D. Zangmeister, C. Zarobila, J. Starkweather, et al. 2022. Disinfection of respirators with ultraviolet radiation. J. Res. Natl. Inst. Stan. 126:126058. doi:10.6028/jres.126.058.
  • Ratnesar-Shumate, S., G. Williams, B. Green, M. Krause, B. Holland, S. Wood, J. Bohannon, J. Boydston, D. Freeburger, I. Hooper, et al. 2020. Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. J. Infect. Dis. 222 (2):214–22. doi:10.1093/infdis/jiaa274.
  • Reed, N. G. 2010. The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep. 125 (1):15–27. doi:10.1177/003335491012500105.
  • Reith, J., and C. Mayer. 2011. Peptidoglycan turnover and recycling in Gram-positive bacteria. Appl. Microbiol. Biotechnol. 92 (1):1–11. doi:10.1007/s00253-011-3486-x.
  • Ross, K. F. A., and E. Billing. 1957. The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements. J. Gen. Microbiol. 16 (2):418–25. doi:10.1099/00221287-16-2-418.
  • Rubel, G. O. 1997. Measurement of water vapor sorption by single biological aerosols. Aerosol Sci. Technol. 27 (4):481–90. doi:10.1080/02786829708965488.
  • Rutala, W. A., M. F. Gergen, B. M. Tande, and D. J. Weber. 2013. Rapid hospital room decontamination using ultraviolet (UV) light with a nanostructured UV-reflective wall coating. Infect. Control Hosp. Epidemiol. 34 (5):527–9. doi:10.1086/670211.
  • Sagripanti, J.-L., and C. D. Lytle. 2007. Inactivation of influenza virus by solar radiation. Photochem. Photobiol. 83 (5):1278–82. doi:10.1111/j.1751-1097.2007.00177.x.
  • Sagripanti, J.-L., and C. D. Lytle. 2011. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. Arch. Virol. 156 (3):489–94. doi:10.1007/s00705-010-0847-1.
  • Saxena, D., E. Ben-Dov, R. Manasherob, Z. Barak, S. Boussiba, and A. Zaritsky. 2002. A UV tolerant mutant of Bacillus thuringiensis subsp. kurstaki producing melanin. Curr. Microbiol. 44 (1):25–30. doi:10.1007/s00284-001-0069-6.
  • Schumm, M. A., J. E. Hadaya, N. Mody, B. A. Myers, and M. Maggard-Gibbons. 2021. Filtering facepiece respirator (N95 respirator) reprocessing: A systematic review. JAMA 325 (13):1296–317. doi:10.1001/jama.2021.2531.
  • Setlow, P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15 (4):172–80. doi:10.1016/j.tim.2007.02.004.
  • Setlow, P. 2006. Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101 (3):514–25. doi:10.1111/j.1365-2672.2005.02736.x.
  • Shahab, N., F. Flett, S. G. Oliver, and P. R. Butler. 1996. Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli Blr. Microbiology 142 (8):1927–35. doi:10.1099/13500872-142-8-1927.
  • Sirotkin, V. A., I. A. Komissarov, and A. V. Khadiullina. 2012. Hydration of proteins: Excess partial volumes of water and proteins. J. Phys. Chem. B 116 (13):4098–105. doi:10.1021/jp300726p.
  • Soni, A., I. Oey, P. Silcock, and P. Bremer. 2016. Bacillus spores in the food industry: A review on resistance and response to novel inactivation technologies. Compr. Rev. Food Sci. Food Saf. 15 (6):1139–48. doi:10.1111/1541-4337.12231.
  • Stewart, G. C. 2015. The exosporium layer of bacterial spores: A connection to the environment and the infected host. Microbiol. Mol. Biol. Rev. 79 (4):437–57. doi:10.1128/MMBR.00050-15.
  • Tallentire, A., J. R. Hayes, B. F. Kimler, and E. L. Powers. 1974. H2O and D2O sorption studies on spores of Bacillus megaterium. Radiat. Res 57 (2):300–5. doi:10.2307/3573835.
  • Taylor, W., E. Camilleri, D. L. Craft, G. Korza, M. R. Granados, J. Peterson, R. Szczpaniak, S. K. Weller, R. Moeller, T. Douki, et al. 2020. DNA damage kills bacterial spores and cells exposed to 222-nanometer UV radiation. Appl. Environ. Microbiol. 86 (8):e03039-19. doi:10.1128/AEM.03039-19.
  • Tiburski, J. H., A. Rosenthal, S. Guyot, J.-M. Perrier-Cornet, and P. Gervais. 2014. Water distribution in bacterial spores: A key factor in heat resistance. Food Biophys. 9 (1):10–9. doi:10.1007/s11483-013-9312-5.
  • Tong, Y. Y., and B. Lighthart. 1997. Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere. Photochem. Photobiol. 65 (1):103–6. doi:10.1111/j.1751-1097.1997.tb01884.x.
  • Tuminello, P. S., E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham. 1997. Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm. Appl. Opt. 36 (13):2818–24. doi:10.1364/AO.36.002818.
  • Vejerano, E. P., and L. C. Marr. 2018. Physico-chemical characteristics of evaporating respiratory fluid droplets. J. R Soc. Interface 15 (139):20170939. 2017.0939. doi:10.1098/rsif.2017.0939.
  • Waldham, D. G., and H. O. Halvorson. 1954. Studies on the relationship between equilibrium vapor pressure and moisture content of bacterial endospores. Appl. Microbiol. 2 (6):333–8. doi:10.1128/am.2.6.333-338.1954.
  • Westphal, A. J., P. B. Price, T. J. Leighton, and K. E. Wheeler. 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc. Natl. Acad. Sci. U S A 100 (6):3461–6. doi:10.1073/pnas.232710999.
  • Weis, C. P., A. J. Intrepido, A. K. Miller, P. G. Cowin, M. A. Durno, J. S. Gebhardt, and R. Bull. 2002. Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate office. JAMA 288 (22):2853–8. doi:10.1001/jama.288.22.2853.
  • Wood, J. P., J. Archer, M. W. Calfee, S. Serre, L. Mickelsen, A. Mikelonis, L. Oudejans, M. Hu, S. Hurst, and V. K. Rastogi. 2021. Inactivation of Bacillus anthracis and Bacillus atrophaeus spores on different surfaces with ultraviolet light produced with a low-pressure mercury vapor lamp or light emitting diodes. J. Appl. Microbiol. 131 (5):2257–69. doi:10.1111/jam.14791.
  • Wood, K., A. Wood, C. Penaloza, and E. Eadie. 2022. Turn up the lights, leave them on and shine them all around—numerical simulations point the way to more efficient use of far-UVC lights for the inactivation of airborne coronavirus. Photochem. Photobiol. 98 (2):471–83. doi:10.1111/php.13523.
  • Yang, W., S. Elankumaran, and L. C. Marr. 2011. Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J. R Soc. Interface 8 (61):1176–84. doi:10.1098/rsif.2010.0686.
  • Zhu, L., M. Rajendram, and K. C. Huang. 2021. Effects of fixation on bacterial cellular dimensions and integrity. iScience 24 (4):102348. doi:10.1016/j.isci.2021.102348.