135
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Large eddy simulation of flow field and particle dispersion in a ventilated model room using a parallel lattice Boltzmann method

ORCID Icon &
Pages 577-595 | Received 04 Oct 2022, Accepted 08 Mar 2023, Published online: 13 Apr 2023

References

  • Aidun, C. K., and J. R. Clausen. 2010. Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42 (1):439–72. doi:10.1146/annurev-fluid-121108-145519.
  • Bazdidi-Tehrani, F., M. Kiamansouri, and M. Jadidi. 2016. Inflow turbulence generation techniques for large eddy simulation of flow and dispersion around a model building in a turbulent atmospheric boundary layer. J. Build. Perform. Simul. 9 (6):680–98. doi:10.1080/19401493.2016.1196729.
  • Bazdidi-Tehrani, F., S. Masoumi-Verki, P. Gholamalipour, and M. Kiamansouri. 2019. Large eddy simulation of pollutant dispersion in a naturally cross-ventilated model building: Comparison between sub-grid scale models. Build. Simul. 12 (5):921–41. doi:10.1007/s12273-019-0525-5.
  • Bao, Y. B., and J. Meskas. 2011. Lattice Boltzmann method for fluid simulations. Department of Mathematics, Courant Institute of Mathematical Sciences, 44. New York: New York University Press.
  • Bhatnagar, P., E. Gross, and M. Krook. 1954. A model for collision processes in gases. Phys. Rev. 94 (3):511.
  • Blocken, B., T. Stathopoulos, J. Carmeliet, and J. L. Hensen. 2011. Application of computational fluid dynamics in building performance simulation for the outdoor environment: an overview. J. Build. Perform. Simul. 4 (2):157–84. doi:10.1080/19401493.2010.513740.
  • Chen, S., and G. D. Doolen. 1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1):329–64. doi:10.1146/annurev.fluid.30.1.329.
  • Chen, H., C. Teixeira, and K. Molvig. 1998. Realization of fluid boundary conditions via discrete Boltzmann dynamics. Int. J. Mod. Phys. C 09 (08):1281–92. doi:10.1142/S0129183198001151.
  • Chen, F., S. C. M. Yu, and A. C. K. Lai. 2006. Modeling particle distribution and deposition in indoor environments with a new drift–flux model. Atmos. Environ. 40 (2):357–67. doi:10.1016/j.atmosenv.2005.09.044.
  • Chen, C., W. Liu, C. H. Lin, and Q. Chen. 2015. Accelerating the Lagrangian method for modeling transient particle transport in indoor environments. Aerosol Sci. Technol. 49 (5):351–61. doi:10.1080/02786826.2015.1031724.
  • Chen, J. X., A. D. Workman, D. A. Chari, D. H. Jung, E. D. Kozin, D. J. Lee, D. B. Welling, B. S. Bleier, and A. M. Quesnel. 2020. Demonstration and mitigation of aerosol and particle dispersion during mastoidectomy relevant to the COVID-19 era. Otol. Neurotol. 41 (9):1230–9. doi:10.1097/MAO.0000000000002765.
  • Davidson, C. I., R. F. Phalen, and P. A. Solomon. 2005. Airborne particulate matter and human health: a review. Aerosol Sci. Technol. 39 (8):737–49. doi:10.1080/02786820500191348.
  • D'Humières, D. 2002. Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 360 (1792):437–51. doi:10.1098/rsta.2001.0955.
  • Dockery, D. W., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, Jr, and F. E. Speizer. 1993. An association between air pollution and mortality in six US cities. N Engl. J. Med. 329 (24):1753–9. doi:10.1056/NEJM199312093292401.
  • Gao, N. P., and J. L. Niu. 2007. Modeling particle dispersion and deposition in indoor environments. Atmos. Environ. 41 (18):3862–76. doi:10.1016/j.atmosenv.2007.01.016.
  • Haussmann, M., F. Ries, J. B. Jeppener-Haltenhoff, Y. Li, M. Schmidt, C. Welch, L. Illmann, B. Böhm, H. Nirschl, M. J. Krause, et al. 2020. Evaluation of a near-wall-modeled large eddy lattice Boltzmann method for the analysis of complex flows relevant to IC engines. Computation 8 (2):43. doi:10.3390/computation8020043.
  • Henn, T., G. Thäter, W. Dörfler, H. Nirschl, and M. J. Krause. 2016. Parallel dilute particulate flow simulations in the human nasal cavity. Comput. Fluids 124:197–207. doi:10.1016/j.compfluid.2015.08.002.
  • Heuveline, V., M. J. Krause, and J. Latt. 2009. Towards a hybrid parallelization of lattice Boltzmann methods. Comput. Math. Appl. 58 (5):1071–80. doi:10.1016/j.camwa.2009.04.001.
  • Jayaweera, M., H. Perera, B. Gunawardana, and J. Manatunge. 2020. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 188:109819. doi:10.1016/j.envres.2020.109819.
  • Krause, M. J., F. Klemens, T. Henn, R. Trunk, and H. Nirschl. 2017. Particle flow simulations with homogenised lattice Boltzmann methods. Particuology 34:1–13. doi:10.1016/j.partic.2016.11.001.
  • Krause, M. J., A. Kummerländer, S. J. Avis, H. Kusumaatmaja, D. Dapelo, F. Klemens, M. Gaedtke, N. Hafen, A. Mink, R. Trunk, et al. 2021. OpenLB—Open source lattice Boltzmann code. Comput. Math. Appl. 81:258–88. doi:10.1016/j.camwa.2020.04.033.
  • Li, J., J. B. Fink, A. A. Elshafei, L. M. Stewart, H. J. Barbian, S. H. Mirza, L. Al-Harthi, D. Vines, and S. Ehrmann. 2021. Placing a mask on COVID-19 patients during high-flow nasal cannula therapy reduces aerosol particle dispersion. ERJ Open Res. 7 (1):00519–2020. doi:10.1183/23120541.00519-2020.
  • Lin, K. C., H. Tao, and K. W. Lee. 2014. An early stage of aerosol particle transport in flows past periodic arrays of clear staggered obstructions: A computational study. Aerosol Sci. Technol. 48 (12):1299–307. doi:10.1080/02786826.2014.982783.
  • Malaspinas, O., and P. Sagaut. 2011. Advanced large-eddy simulation for lattice Boltzmann methods: The approximate deconvolution model. Phys. Fluids 23 (10):105103. doi:10.1063/1.3650422.
  • Nathen, P., D. Gaudlitz, M. J. Krause, and N. A. Adams. 2018. On the stability and accuracy of the BGK, MRT and RLB Boltzmann schemes for the simulation of turbulent flows. Commun. Comput. Phys. 23 (3):1–31.
  • Patankar, S. V., and D. B. Spalding. 1983. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. In Numerical prediction of flow, heat transfer, turbulence and combustion, 54–73. Oxford: Pergamon Press.
  • Pope, C. A., M. J. Thun, M. M. Namboodiri, D. W. Dockery, J. S. Evans, F. E. Speizer, and C. W. Heath. 1995. Particulate air pollution as a predictor of mortality in a prospective study of US adults. Am. J. Respir. Crit. Care Med. 151 (3_pt_1):669–74. doi:10.1164/ajrccm/151.3_Pt_1.669.
  • Pope, S. B. 2000. Turbulent flows. Cambridge: Cambridge University Press.
  • Sajjadi, H., M. Salmanzadeh, G. Ahmadi, and S. Jafari. 2016. LES and RANS model based on LBM for simulation of indoor airflow and particle dispersion and deposition. Build. Environ. 102:1–12. doi:10.1016/j.buildenv.2016.03.006.
  • Sajjadi, H., M. Salmanzadeh, G. Ahmadi, and S. Jafari. 2018. Hybrid Les/Rans Model for Simulation of Particle Dispersion and Deposition. In Fluids Engineering Division Summer Meeting Vol. 51579. Montreal, Quebec, Canada: American Society of Mechanical Engineers.
  • Schneider, A. 2015. A consistent large eddy approach for lattice boltzmann methods and its application to complex flows. PhD diss., Technische Universität Kaiserslautern.
  • Schubiger, A., S. Barber, and H. Nordborg. 2020. Evaluation of the lattice Boltzmann method for wind modelling in complex terrain. Wind Energ. Sci. 5 (4):1507–19. doi:10.5194/wes-5-1507-2020.
  • Sheida, M., M. Taeibi-Rahni, and V. Esfahanian. 2017. A new approach to reduce memory consumption in lattice boltzmann method on gpu. J. Appl. Fluid Mech. 10 (1):55–67.
  • Shimada, M., K. Okuyama, S. Okazaki, T. Asai, M. Matsukura, and Y. Ishizu. 1996. Numerical simulation and experiment on the transport of fine particles in a ventilated room. Aerosol Sci. Technol. 25 (3):242–55. doi:10.1080/02786829608965394.
  • Skordos, P. A. 1993. Initial and boundary conditions for the lattice Boltzmann method. Phys. Rev. E 48 (6):4823–42. doi:10.1103/PhysRevE.48.4823.
  • Topp, C., P V. Nielsen, and L. Davidson. 2000. Room airflows with low Reynolds number effects. Department of Building Technology and Structural Engineering, Aalborg University. Indoor Environ. Eng. R0030 (107):541–6.
  • Tran, N. P., M. Lee, and S. Hong. 2017. Performance optimization of 3D lattice Boltzmann flow solver on a GPU. Scientific Programming 2017:1–16. doi:10.1155/2017/1205892.
  • Wellein, G., T. Zeiser, G. Hager, and S. Donath. 2006. On the single processor performance of simple lattice Boltzmann kernels. Comput. Fluids 35 (8-9):910–9. doi:10.1016/j.compfluid.2005.02.008.
  • Xu, J., J. Zhang, H. Wang, and J. Mi. 2013. Fine particle behavior in the air flow past a triangular cylinder. Aerosol Sci. Technol. 47 (8):875–84. doi:10.1080/02786826.2013.798612.
  • Zahari, N. M., M. H. Zawawi, L. M. Sidek, D. Mohamad, Z. Itam, M. Z. Ramli, A. Syamsir, A. Abas, and M. Rashid. 2018. Introduction of discrete phase model (DPM) in fluid flow: a review. In AIP Conference Proceedings Vol. 2030 (1), 020234.
  • Zeiser, T., G. Wellein, A. Nitsure, K. Iglberger, U. Rude, and G. Hager. 2008. Introducing a parallel cache oblivious blocking approach for the lattice Boltzmann method. PCFD. 8 (1/2/3/4):179–88. doi:10.1504/PCFD.2008.018088.
  • Zhang, J., J. Mi, and H. Wang. 2012. A new mesh-independent model for droplet/particle collision. Aerosol Sci. Technol. 46 (6):622–30. doi:10.1080/02786826.2011.649809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.