250
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Using particle-resolved aerosol model simulations to guide the interpretations of cloud condensation nuclei experimental data

ORCID Icon, , , , ORCID Icon & ORCID Icon
Pages 608-618 | Received 14 Aug 2022, Accepted 28 Mar 2023, Published online: 24 Apr 2023

References

  • Andreae, M. O., and D. Rosenfeld. 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth. Sci. Rev. 89 (1–2):13–41. doi:10.1016/j.earscirev.2008.03.001.
  • Aneja, V. P., J. Blunden, K. James, W. H. Schlesinger, R. Knighton, W. Gilliam, G. Jennings, D. Niyogi, and S. Cole. 2008. Ammonia Assessment from Agriculture: U.S. Status and Needs. J. Environ. Qual. 37 (2):515–20. doi:10.2134/jeq2007.0002in.
  • Behera, S. N., M. Sharma, V. P. Aneja, and R. Balasubramanian. 2013. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. Int. 20 (11):8092–131. doi:10.1007/s11356-013-2051-9.
  • Bondy, A. L., D. Bonanno, R. C. Moffet, B. Wang, A. Laskin, and A. P. Ault. 2018. The diverse chemical mixing state of aerosol particles in the southeastern United States. Atmos. Chem. Phys. 18 (16):12595–612. doi:10.5194/acp-18-12595-2018.
  • Cruz, C. N., and S. N. Pandis. 1998. The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. J. Geophys. Res. 103 (D11):13111–23. doi:10.1029/98JD00979.
  • Cubison, M. J., B. Ervens, G. Feingold, K. S. Docherty, I. M. Ulbrich, L. Shields, K. Prather, S. Hering, and J. L. Jimenez. 2008. The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties. Atmos. Chem. Phys. 8 (18):5649–67. doi:10.5194/acp-8-5649-2008.
  • Curtis, J. H., M. D. Michelotti, N. Riemer, M. T. Heath, and M. West. 2016. Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models. Comput. Phys. 322:21–32. doi:10.1016/j.jcp.2016.06.029.
  • Dawson, J. N., K. A. Malek, P. N. Razafindrambinina, T. M. Raymond, D. D. Dutcher, A. A. Asa-Awuku, and M. A. Freedman. 2020. Direct comparison of the submicron aerosol hygroscopicity of water-soluble sugars. ACS Earth Space Chem. 4 (12):2215–26. doi:10.1021/acsearthspacechem.0c00159.
  • DeVille, N., M. Riemer, and West, L. 2019. Convergence of a generalized weighted flow algorithm for stochastic particle coagulation. J. Comput. Dyn. 6 (1):69–94. doi:10.3934/jcd.2019003.
  • DeVille, R. E. L., N. Riemer, and M. West. 2011. Weighted Flow Algorithms (WFA) for stochastic particle coagulation. Comput. Phys. 230 (23):8427–51. doi:10.1016/j.jcp.2011.07.027.
  • Dusek, U., G. P. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, et al. 2006. Size matters more than chemistry aerosol particles. Science 312 (5778):1375–8. doi:10.1126/science.1125261.
  • Feingold, G. 2003. Modeling of the first indirect effect: Analysis of measurement requirements. Geophys. Res. Lett. 30 (19):1–4. doi:10.1029/2003GL017967.
  • Fofie, E. A., N. M. Donahue, and A. Asa-Awuku. 2018. Cloud condensation nuclei activity and droplet formation of primary and secondary organic aerosol mixtures. Aerosol Sci. Technol. 52 (2):242–51. doi:10.1080/02786826.2017.1392480.
  • Gohil, K., and A. A. Asa-Awuku. 2022. Cloud condensation nuclei (CCN) activity analysis of low-hygroscopicity aerosols using the aerodynamic aerosol classifier (AAC). Atmos. Meas. Tech. 15 (4):1007–19. doi:10.5194/amt-15-1007-2022.
  • Hudson, J. G. 2007. Variability of the relationship between particle size and cloud-nucleating ability. Geophys. Res. Lett. 34:1–5. doi:10.1029/2006GL028850.
  • Kim, N., S. S. Yum, M. Park, J. S. Park, H. J. Shin, and J. Y. Ahn. 2020. Hygroscopicity of urban aerosols and its link to size-resolved chemical composition during spring and summer in Seoul, Korea. Atmos. Chem. Phys. 20 (19):11245–62. doi:10.5194/acp-20-11245-2020.
  • Kreidenweis, S. M., and A. Asa-Awuku. 2014. Aerosol hygroscopicity: Particle water content and its role in atmospheric processes. In Treatise on Geochemistry, eds. Heinrich D. Holland and Karl K. Turekian, 2nd ed., 331–361. Elsevier. doi:10.1016/B978-0-08-095975-7.00418-6.
  • Lambe, A. T., T. B. Onasch, P. Massoli, D. R. Croasdale, J. P. Wright, A. T. Ahern, L. R. Williams, D. R. Worsnop, W. H. Brune, and P. Davidovits. 2011. Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmos. Chem. Phys. 11 (17):8913–28. doi:10.5194/acp-11-8913-2011.
  • Lance, S., T. Raatikainen, T. B. Onasch, D. R. Worsnop, X. Y. Yu, M. L. Alexander, M. R. Stolzenburg, P. H. McMurry, J. N. Smith, and A. Nenes. 2013. Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006. Atmos. Chem. Phys. 13 (9):5049–62. doi:10.5194/acp-13-5049-2013.
  • Lei, T., A. Zuend, W. G. Wang, Y. H. Zhang, and M. F. Ge. 2014. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols. Atmos. Chem. Phys. 14 (20):11165–83. doi:10.5194/acp-14-11165-2014.
  • Marynowski, L., and B. R. T. Simoneit. 2022. Saccharides in atmospheric particulate and sedimentary organic matter: Status overview and future perspectives. Chemosphere 288 (Pt 1):132376. doi:10.1016/j.chemosphere.2021.132376.
  • Moore, R. H., and A. Nenes. 2009. Scanning flow CCN analysis method for fast measurements of CCN spectra. Aerosol Sci. Technol. 43 (12):1192–207. doi:10.1080/02786820903289780.
  • Moore, R. H., A. Nenes, and J. Medina. 2010. Scanning mobility CCN analysis-A method for fast measurements of size-resolved CCN distributions and activation kinetics. Aerosol Sci. Technol. 44 (10):861–71. doi:10.1080/02786826.2010.498715.
  • Peng, C., P. N. Razafindrambinina, K. A. Malek, L. Chen, W. Wang, R.-J. Huang, Y. Zhang, X. Ding, M. Ge, X. Wang, et al. 2021. Interactions of organosulfates with water vapor under sub- and supersaturated conditions. Atmos. Chem. Phys. 21 (9):7135–48. doi:10.5194/acp-21-7135-2021.
  • Petters, M. D., and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi:10.5194/acp-7-1961-2007.
  • Petters, M. D., and S. M. Kreidenweis. 2008. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity - Part 2: Including solubility. Atmos. Chem. Phys. 8 (20):6273–9. doi:10.5194/acp-8-6273-2008.
  • Petters, M. D., and S. M. Kreidenweis. 2013. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity-Part 3: Including surfactant partitioning. Atmos. Chem. Phys. 13 (2):1081–91. doi:10.5194/acp-13-1081-2013.
  • Razafindrambinina, P. N., K. A. Malek, J. N. Dawson, K. DiMonte, T. M. Raymond, D. D. Dutcher, M. A. Freedman, and A. Asa-Awuku. 2022. Hygroscopicity of internally mixed ammonium sulfate and secondary organic aerosol particles formed at low and high relative humidity. Environ. Sci.: Atmos. 2 (2):202–14. doi:10.1039/D1EA00069A.
  • Riemer, N., A. P. Ault, M. West, R. L. Craig, and J. H. Curtis. 2019. Aerosol mixing state: Measurements, modeling, and impacts. Rev. Geophys. 57 (2):187–249. doi:10.1029/2018RG000615.
  • Riemer, N., M. West, R. A. Zaveri, and R. C. Easter. 2009. Simulating the evolution of soot mixing state with a particle-resolved aerosol model. J. Geophys. Res. 114 (D9):1–22. doi:10.1029/2008JD011073.
  • Roberts, G. C., P. Artaxo, J. Zhou, E. Swietlicki, and M. O. Andreae. 2002. Sensitivity of CCN spectra on chemical and physical properties of aerosol : A case study from the Amazon Basin. J. Geophys. Res.: Atmos. 107:1–18. doi:10.1029/2001JD000583.
  • Shou, C., N. Riemer, T. B. Onasch, A. J. Sedlacek, A. T. Lambe, E. R. Lewis, P. Davidovits, and M. West. 2019. Mixing state evolution of agglomerating particles in an aerosol chamber: Comparison of measurements and particle-resolved simulations. Aerosol Sci. Technol. 53 (11):1229–43. doi:10.1080/02786826.2019.1661959.
  • Stokes, R. H., and R. A. Robinson. 1966. Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. J. Phys. Chem. 70 (7):2126–31. doi:10.1021/j100879a010.
  • Svenningsson, B., J. Rissler, E. Swietlicki, M. Mircea, M. Bilde, M. C. Facchini, S. Decesari, S. Fuzzi, J. Zhou, J. Mønster, et al. 2006. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 6 (7):1937–52. doi:10.5194/acp-6-1937-2006.
  • Tian, J., B. T. Brem, M. West, T. C. Bond, M. J. Rood, and N. Riemer. 2017. Simulating aerosol chamber experiments with the particle-resolved aerosol model PartMC. Aerosol Sci. Technol. 51 (7):856–67. doi:10.1080/02786826.2017.1311988.
  • Tian, J., N. Riemer, M. West, L. Pfaffenberger, H. Schlager, and A. Petzold. 2014. Modeling the evolution of aerosol particles in a ship plume using PartMC-MOSAIC. Atmos. Chem. Phys. 14 (11):5327–47. doi:10.5194/acp-14-5327-2014.
  • Vu, D., S. Gao, T. Berte, M. Kacarab, Q. Yao, K. Vafai, and A. Asa-Awuku. 2019. External and internal cloud condensation nuclei (CCN) mixtures: Controlled laboratory studies of varying mixing states. Atmos. Meas. Tech. 12 (8):4277–89. doi:10.5194/amt-12-4277-2019.
  • Wang, Q., L. Li, J. Zhou, J. Ye, W. Dai, H. Liu, Y. Zhang, R. Zhang, J. Tian, Y. Chen, et al. 2020. Measurement report: Source and mixing state of black carbon aerosol in the North China Plain: Implications for radiative effect. Atmos. Chem. Phys. 20 (23):15427–42. doi:10.5194/acp-20-15427-2020.
  • Winkler, P. 1973. The growth of atmospheric aerosol particles as a function of the relative humidity—II. An improved concept of mixed nuclei. J. Aerosol Sci. 4 (5):373–87. doi:10.1016/0021-8502(73)90027-X.
  • Xu, W., J. Ovadnevaite, K. N. Fossum, C. Lin, R.-J. Huang, C. O'Dowd, and D. Ceburnis. 2020. Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: Marine and continental air masses. Atmos. Chem. Phys. 20 (6):3777–91. doi:10.5194/acp-20-3777-2020.
  • Ye, Q., E. S. Robinson, X. Ding, P. Ye, R. Sullivan, and N. Robinson. 2016. Mixing of secondary organic aerosols versus relative humidity. Proc. Natl. Acad. Sci. U S A 113 (45):12649–54. doi:10.1073/pnas.1604536113.
  • Yuan, L., and C. Zhao. 2023. Quantifying particle-to-particle heterogeneity in aerosol hygroscopicity. Atmos. Chem. Phys. 23 (5):3195–205. doi:10.5194/acp-23-3195-2023.
  • Zaveri, R. A., J. C. Barnard, R. C. Easter, N. Riemer, and M. West. 2010. Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume. J. Geophys. Res. 115 (D17):D17210. doi:10.1029/2009JD013616.
  • Zhao, D. F., A. Buchholz, B. Kortner, P. Schlag, F. Rubach, A. Kiendler-Scharr, R. Tillmann, A. Wahner, J. M. Flores, Y. Rudich, et al. 2015. Size-dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei. Geophys. Res. Lett. 42 (24):10–,920. doi:10.1002/2015GL066497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.