267
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of a detection system for gas-phase aromatics and other molecules ionizable by soft X-rays demonstrated using methyl salicylate

ORCID Icon, , , , , & show all
Pages 619-632 | Received 03 Nov 2022, Accepted 12 Apr 2023, Published online: 27 Apr 2023

References

  • Ao, J., T. Yuan, Y. Ma, L. Gao, N. Ni, and D. Li. 2017. Identification, characteristics and human exposure assessments of triclosan, bisphenol-A, and four commonly used organic UV filters in indoor dust collected from Shanghai, China. Chemosphere. 184:575–83. doi:10.1016/j.chemosphere.2017.06.033.
  • Billet, S., G. Garçon, Z. Dagher, A. Verdin, F. Ledoux, F. Cazier, D. Courcot, A. Aboukais, and P. Shirali. 2007. Ambient particulate matter (PM2.5): Physicochemical characterization and metabolic activation of the organic fraction in human lung epithelial cells (A549). Environ. Res. 105 (2):212–23. doi:10.1016/j.envres.2007.03.001.
  • Black, R. 2016. Development, historical use and properties of chemical warfare agents. In Issues in toxicology, ed. F. Worek, J. Jenner, and H. Thiermann, 1–28. The Royal Society of Chemistry. https://pubs.rsc.org/no/content/chapter/bk9781849739696-00001/978-1-78262-241-3.
  • Black, R. M., R. J. Clarke, R. W. Read, and M. T. J. Reid. 1994. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. J. Chromatogr. A. 662 (2):301–21. doi:10.1016/0021-9673(94)80518-0.
  • Canosa, P., D. Pérez-Palacios, A. Garrido-López, M. T. Tena, I. Rodríguez, E. Rubí, and R. Cela. 2007a. Pressurized liquid extraction with in-cell clean-up followed by gas chromatography-tandem mass spectrometry for the selective determination of parabens and triclosan in indoor dust. J. Chromatogr. A. 1161 (1–2):105–12. doi:10.1016/j.chroma.2007.05.089.
  • Canosa, P., I. Rodríguez, E. Rubí, and R. Cela. 2007b. Determination of parabens and triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry. Anal. Chem. 79 (4):1675–81. doi:10.1021/ac061896e.
  • Chen, J., E. M. Hartmann, J. Kline, K. Van Den Wymelenberg, and R. U. Halden. 2018. Assessment of human exposure to triclocarban, triclosan and five parabens in U.S. indoor dust using dispersive solid phase extraction followed by liquid chromatography tandem mass spectrometry. J. Hazard. Mater. 360:623–30. doi:10.1016/j.jhazmat.2018.08.014.
  • Chuang, T.-S., and L.-M. Chang. 2013. To mitigate airborne molecular contamination through ultra-pure air system. Build. Environ. 59:153–63. doi:10.1016/j.buildenv.2012.08.016.
  • Dallas, A. J., K. M. Graham, M. Clarysse, and V. Fonderle. 2002. Characterization and control of organic airborne contamination in lithographic processing. D.J.C. Herr, ed, p. 1085. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4689/1/Characterization-and-control-of-organic-airborne-contamination-in-lithographic-processing/10.1117/12.473438.short?SSO=1.
  • Daly, J. G. 2015. Contamination and UV lasers: Lessons learned. in. A.E. Hatheway, ed, p. 95730C. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9573/1/Contamination-and-UV-lasers-lessons-learned/10.1117/12.2185291.short.
  • Den, W., H. Bai, and Y. Kang. 2006. Organic Airborne Molecular Contamination in Semiconductor Fabrication Clean Rooms. J. Electrochem. Soc. 153 (2):G149. doi:10.1149/1.2147286.
  • Dolgin, E. 2013. Syrian gas attack reinforces need for better anti-sarin drugs. Nat. Med. 19 (10):1194–5. doi:10.1038/nm1013-1194.
  • Donovan, R. P. 1990. Particle Control for Semiconductor Manufacturing. New York, NY: Marcel Dekker, Inc.
  • Easter, R. C., and L. K. Peters. 1994. Binary homogeneous nucleation: Temperature and relative humidity fluctuations, nonlinearity, and aspects of new particle production in the atmosphere. J. Appl. Meteor. 33 (7):775–84. doi:10.1175/1520-0450(1994)033 <0775:BHNTAR>2.0.CO;2.
  • Fang, Y., and R. P. Ramasamy. 2015. Current and prospective methods for plant disease detection. Biosensors. 5 (3):537–61. doi:10.3390/bios5030537.
  • Fang, Y., Y. Umasankar, and R. P. Ramasamy. 2016. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosens. Bioelectron. 81:39–45. doi:10.1016/j.bios.2016.01.095.
  • Gordon, J., B. Murray, L. E. Frisa, E. Nelson, C. Weins, M. Green, and M. Lamantia. 2005. Use of excimer laser test system for studying haze growth. In. J.T. Weed, P.M. Martin, eds., p. 59923J. https://www.jstor.org/stable/20488498.
  • Gormley, P. G., and M. Kennedy. 1975. Diffusion from a stream flowing through a cylindrical tube. Proc. R. Irish Acad. Sect. A Math. Phys. Sci. 11 (4):51–3. doi:10.2307/20488498.
  • Hildebrandt, L., N. M. Donahue, and S. N. Pandis. 2009. High formation of secondary organic aerosol from the photo-oxidation of toluene. Atmos. Chem. Phys. 9 (9):2973–86. doi:10.5194/acp-9-2973-2009.
  • Iland, K., J. Wedekind, J. Wölk, P. E. Wagner, and R. Strey. 2004. Homogeneous nucleation rates of 1-pentanol. J. Chem. Phys. 121 (24):12259–64. doi:10.1063/1.1809115.
  • Ito, T., and S. Okazaki. 2000. Pushing the limits of lithography. Nature. 406 (6799):1027–31. doi:10.1038/35023233.
  • Kientz, C. E. 1998. Chromatography and mass spectrometry of chemical warfare agents, toxins and related compounds: State of the art and future prospects. J. Chromatogr. A. 814 (1–2):1–23. doi:10.1016/S0021-9673(98)00338-0.
  • Kim, C., S.-C. Chen, J. Zhou, J. Cao, and D. Y. H. Pui. 2019. Measurements of outgassing from PM 2.5 collected in Xi’an, China through soft X-ray-radiolysis. IEEE Trans. Semicond. Manufact. 32 (3):259–66. doi:10.1109/TSM.2019.2921331.
  • Kim, C., K. Cho, and D. Y. H. Pui. 2020. Investigation of airborne molecular contamination in cleanroom air environment through portable soft X-ray radiolysis detector. Appl. Sci. 10 (3):978. doi:10.3390/app10030978.
  • Kim, C., S. Kang, and D. Y. H. Pui. 2016a. Removal of airborne sub-3 nm particles using fibrous filters and granular activated carbons. Carbon N. Y. 104:125–32. doi:10.1016/j.carbon.2016.03.060.
  • Kim, C., Y. T. Sul, and D. Y. H. Pui. 2016b. Real-time and online screening method for materials emitting volatile organic compounds. J. Nanopart. Res. 18 (9):282. doi:10.1007/s11051-016-3598-4.
  • Kim, C., Z. Zuo, H. Finger, S. Haep, C. Asbach, H. Fissan, and D. Y. H. Pui. 2015. Soft X-ray-assisted detection method for airborne molecular contaminations (AMCs). J. Nanopart. Res. 17 (3):126. doi:10.1007/s11051-015-2936-2.
  • Kim, S. C., M. S. Harrington, and D. Y. H. Pui. 2006. Experimental study of nanoparticles penetration through commercial filter media. J. Nanopart. Res. 9 (1):117–25. doi:10.1007/s11051-006-9176-4.
  • Kim, S. C., S. Kang, H. Lee, D.-B. Kwak, Q. Ou, C. Pei, and D. Y. H. Pui. 2020. Nanofiber filter performance improvement: Nanofiber layer uniformity and branched nanofiber. Aerosol Air Qual. Res. 20 (1):80–8. doi:10.4209/aaqr.2019.07.0343.
  • Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V. M. Kerminen, W. Birmili, and P. H. McMurry. 2004. Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci. 35 (2):143–76. doi:10.1016/j.jaerosci.2003.10.003.
  • Kwak, D.-B., S. C. Kim, H. Lee, and D. Y. H. Pui. 2021. Numerical investigation of nanoparticle deposition location and pattern on a sharp-bent tube wall. Int. J. Heat Mass Transf. 164:120534. doi:10.1016/j.ijheatmasstransfer.2020.120534.
  • Kwak, D.-B., J. S. Wang, H. Lee, and D. Y. H. Pui. 2023. Numerical study of nanoparticle penetration characteristics in forked tubes using tracking particle identification. Powder Technol. 415:118172. doi:10.1016/j.powtec.2022.118172.
  • Lafuente, M., D. Sanz, M. Urbiztondo, J. Santamaría, M. P. Pina, and R. Mallada. 2020. Gas phase detection of chemical warfare agents CWAs with portable Raman. J. Hazard. Mater. 384:121279. doi:10.1016/j.jhazmat.2019.121279.
  • Lobert, J. M., P. W. Cate, D. J. Ruede, J. R. Wildgoose, C. M. Miller, and J. C. Gaudreau. 2010. Advances in the understanding of low molecular weight silicon formation and implications for control by AMC filters. In Metrology, inspection, and process control for microlithography XXIV, ed. C.J. Raymond, 763832. San Jose: SPIE Advanced Lithography. doi:10.1117/12.848390.
  • Lobert, J. M., C. M. Miller, A. Grayfer, and A. M. Tivin. 2009. Measurement of low molecular weight silicon AMC to protect UV optics in photo-lithography environments. In Metrology. Inspection and process control for microlithography XXIII, ed. J.A. Allgair and C.J. Raymond, 727222. San Jose: SPIE Advanced Lithography. doi:10.1117/12.816277.
  • Lobert, J. M., R. Srivastava, and F. Belanger. 2018. Airborne molecular contamination: Formation, impact, measurement and removal of nitrous acid (HNO2). 2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), IEEE, Saratoga Springs, pp. 180–185. https://ieeexplore.ieee.org/document/8373195.
  • Maskey, S., H. Chae, K. Lee, N. P. Dan, T. T. Khoi, and K. Park. 2016. Morphological and elemental properties of urban aerosols among PM events and different traffic systems. J. Hazard. Mater. 317:108–18. doi:10.1016/j.jhazmat.2016.05.058.
  • Munir, M. M., A. Suhendi, T. Ogi, F. Iskandar, and K. Okuyama. 2013. Ion-induced nucleation rate measurement in SO2/H 2O/N2 gas mixture by soft X-ray ionization at various pressures and temperatures. Adv. Powder Technol. 24 (1):143–9. doi:10.1016/j.apt.2012.04.002.
  • Otto, M. 2015. Airborne molecular contamination: Quality criterion for laser and optical components. A.L. Glebov, P.O. Leisher, eds, p. 93460F. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9346/1/Airborne-molecular-contamination--quality-criterion-for-laser-and-optical/10.1117/12.2076274.short.
  • Park, J., J. A. Thomasson, S. Fernando, K. M. Lee, and T. J. Herrman. 2019. Complexes formed by hydrophobic interaction between Ag-nanospheres and adsorbents for the detection of methyl salicylate VOC. Nanomat. 9 (11):1621. doi:10.3390/nano9111621.
  • Pic, N., C. Martin, M. Vitalis, T. Calarnou, D. Camlay, C. Grosjean, A. Lanier, J. Kames, A. Acksel, and C. Galvez. 2010. Defectivity decrease in the photolithography process by AMC level reduction through implementation of novel filtration and monitoring solutions. C.J. Raymond, ed., p. 76380M. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7638/1/Defectivity-decrease-in-the-photolithography-process-by-AMC-level-reduction/10.1117/12.845591.short.
  • Prakash, A., A. P. Bapat, and M. R. Zachariah. 2003. A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems. Aerosol Sci. Technol. 37 (11):892–8. doi:10.1080/02786820300933.
  • Samsung Newsroom. 2022. Samsung Begins Chip Production Using 3nm Process Technology With GAA Architecture.
  • Seinfeld, J. H., S. N. Pandis, and K. Noone. 1998. Atmospheric chemistry and physics: From air pollution to climate change. Phys. Today. 51 (10):88–90. doi:10.1063/1.882420.
  • Špánik, I., and A. Machyňáková. 2018. Recent applications of gas chromatography with high-resolution mass spectrometry. J. Sep. Sci. 41 (1):163–79. doi:10.1002/jssc.201701016.
  • Stockholm International Peace Research Institute (SIPRI). 1971. The Problem of Chemical and Biological Warfare Volume I. The Rise of CB Weapons. SIPRI. https://www.sipri.org/sites/default/files/CBW_VOL1.PDF.
  • Susaya, J., K. H. Kim, J. Cho, and D. Parker. 2012. The controlling effect of temperature in the application of permeation tube devices in standard gas generation. J. Chromatogr. A. 1225:8–16. doi:10.1016/j.chroma.2011.12.066.
  • Susaya, J., K. H. Kim, J. W. Cho, and D. Parker. 2011. The use of permeation tube device and the development of empirical formula for accurate permeation rate. J. Chromatogr. A. 1218 (52):9328–35. doi:10.1016/j.chroma.2011.11.007.
  • Szinicz, L. 2005. History of chemical and biological warfare agents. Toxicology. 214 (3):167–81. doi:10.1016/j.tox.2005.06.011.
  • Weineck, G., D. Zastera, and A. J. Dallas. 2010. AMC control in photolithography: The past decade in review. C.J. Raymond, ed., p. 76383H. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7638/1/AMC-control-in-photolithography-the-past-decade-in-review/10.1117/12.847258.short.
  • Went, F. W. 1960. Organic matter in the atmosphere, and its possible relation to petroleum formation. Proc. Natl. Acad. Sci. U S A. 46 (2):212–21. doi:10.1073/pnas.46.2.212.
  • Ye, Q., M. Wang, V. Hofbauer, D. Stolzenburg, D. Chen, M. Schervish, A. Vogel, R. L. Mauldin, R. Baalbaki, S. Brilke, et al. 2019. Molecular composition and volatility of nucleated particles from α-pinene oxidation between -50 °C and +25 °C. Environ. Sci. Technol. 53 (21):12357–65. doi:10.1021/acs.est.9b03265.
  • Zhang, R., I. Suh, J. Zhao, D. Zhang, E. C. Fortner, X. Tie, L. T. Molina, and M. J. Molina. 2004. Atmospheric new particle formation enhanced by organic acids. Science. 304 (5676):1487–90. doi:10.1126/science.1095139.
  • Zheng, M., X. Zhao, Y. Cheng, C. Yan, W. Shi, X. Zhang, R. J. Weber, J. J. Schauer, X. Wang, and E. S. Edgerton. 2014. Sources of primary and secondary organic aerosol and their diurnal variations. J. Hazard. Mater. 264:536–44. doi:10.1016/j.jhazmat.2013.10.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.