116
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Hail suppression effectiveness for different cloud condensation nucleus (CCN) populations in continental and maritime environments

ORCID Icon
Pages 645-664 | Received 04 Dec 2022, Accepted 19 Apr 2023, Published online: 10 May 2023

References

  • Andreae, M. O., and D. Rosenfeld. 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 89 (1–2):13–41. doi:10.1016/j.earscirev.2008.03.001.
  • Chen, B., and H. Xiao. 2010. Silver iodide seeding impact on the microphysics and dynamics of convective clouds in the high plains. Atmos. Res. 96:186–207.
  • Cohard, J.-M., and J.-P. Pinty. 2000. A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Q. J. R. Meteorol. Soc. 126:1815–42.
  • Cohard, J. M., J. P. Pinty, and C. Bedos. 1998. Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci. 55 (22):3348–57. doi:10.1175/1520-0469(1998)055<3348:ETSAEO>2.0.CO;2.
  • Cohard, J. M., J. P. Pinty, and K. Suhre. 2000. On the parameterization of activation spectra from cloud condensation nuclei microphysical properties. J. Geophys. Res. 105 (D9):11753–66. doi:10.1029/1999JD901195.
  • Ćurić, M. 1982. The development of the cumulonimbus clouds which moves along a valley. In Cloud dynamics, ed. E. M. Agee and T. Asai, 259–72. Dordrecht: Reidel.
  • Ćurić, M., D. Janc, and V. Vučković. 2007. Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model. Meteorol. Atmos. Phys. 95 (3–4):179–93. doi:10.1007/s00703-006-0202-y.
  • Désalmand, F. 1987. Observations of CCN concentrations south of the Sahara during a Dust Haze. Atmos. Res. 21 (1):13–28. doi:10.1016/0169-8095(87)90014-7.
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu. 2016. Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci. 73 (11):4221–52. doi:10.1175/JAS-D-16-0037.1.
  • Fletcher, N. H. 1962. The physics of rain clouds, 386 pp. New York: Cambridge University Press.
  • Gradshteyn, I. S., and I. M. Ryzhik. 2007. Table of integrals, series and products, 1171. New York: Academic Press.
  • Hsie, E.-Y., R. D. Farley, and H. D. Orville. 1980. Numerical simulation of ice-phase convective cloud seeding. J. Appl. Meteor. 19 (8):950–77. doi:10.1175/1520-0450(1980)019<0950:NSOIPC>2.0.CO;2.
  • Hu, Z., and G. He. 1988. Numerical simulation of microphysical processes in cumulonimbus – part I: Microphysical model. Acta Meteorol. Sin. 2:471–89.
  • Jaenicke, R. 1993. Tropospheric aerosol. In Aerosol-cloud-climate interactions, ed. P. V. Hobbs, 1–31. San Diego: Academic Press.
  • Khain, A. P. 2009. Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett. 4 (1):015004. doi:10.1088/1748-9326/4/1/015004.
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips. 2004. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci. 61 (24):2963–82. doi:10.1175/JAS-3350.1.
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich. 2005. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett. 32:L14828. doi:10.1029/2005GL023187.
  • Kovačević, N. 2019. Hail suppression effectiveness for varying solubility of natural aerosols in water. Meteorol. Atmos. Phys. 131 (3):585–99. doi:10.1007/s00703-018-0587-4.
  • Kovačević, N. 2022. Sensitivity study of the impact of CCN size on simulated ground precipitation for deep convection case. Atmos. Environ. 289:119309. doi:10.1016/j.atmosenv.2022.119309.
  • Kovačević, N., and M. Ćurić. 2013. The impact of the hailstone embryos on simulated surface precipitation. Atmos. Res. 132–133:154–63. doi:10.1016/j.atmosres.2013.05.013.
  • Kovačević, N., and M. Ćurić. 2014. Sensitivity study of the influence of cloud droplet concentration on hail suppression effectiveness. Meteorol. Atmos. Phys. 123 (3–4):195–207. doi:10.1007/s00703-013-0296-y.
  • Lin, Y.-L., R. D. Farley, and H. D. Orville. 1983. Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor. 22 (6):1065–92. doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
  • Lynn, B. H., A. P. Khain, J. Dudhia, D. Rosenfeld, A. Pokrovsky, and A. Seifert. 2005. Spectral (bin) microphysics coupled with a mesoscale model (MM5). Part II: Simulation of a CAPE rain event with a squall line. Mon. Weather Rev. 133 (1):59–71. doi:10.1175/MWR-2841.1.
  • Marinescu, P. J., S. C. van den Heever, M. Heikenfeld, A. I. Barrett, C. Barthlott, C. Hoose, J. Fan, A. M. Fridlind, T. Matsui, A. K. Miltenberger, et al. 2021. Impacts of varying concentrations of cloud condensation nuclei on deep convective cloud updrafts – A multimodel assessment. J. Atmos. Sci. 78 (4):1147–72. doi:10.1175/JAS-D-20-0200.1.
  • Miyamoto, Y. 2021. Effects of number concentration of cloud condensation nuclei on moist convection formation. J. Atmos. Sci. 78 (10):3401–13. doi:10.1175/JAS-D-21-0058.1.
  • Pruppacher, H. R., and J. D. Klett. 1997. Microphysics of clouds and precipitation. 2nd ed, 954. Dordrecht: Kluwer.
  • Rosenfeld, D. 2000. Suppression of rain and snow by urban and industrial air pollution. Science 287 (5459):1793–6. doi:10.1126/science.287.5459.1793.
  • Rosenfeld, D., Y. Rudich, and R. Lahav. 2001. Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. U. S. A. 98 (11):5975–80. doi:10.1073/pnas.101122798.
  • Shepherd, J. M., and S. J. Burian. 2003. Detection of urban-induced rainfall anomalies in a major coastal city. Earth Interact 7 (4):1–17. doi:10.1175/1087-3562(2003)007<0001:DOUIRA>2.0.CO;2.
  • Song, K., J. G. Hudson, S. S. Yum, and B. Choi. 2004. Maritime-continental contrasts of cloud condensation nuclei in the west coast of the Korean peninsula. American Geophysical Union, Fall Meeting 2004, abstract id. A23C-0827.
  • Squires, P. 1956. The microstructure of cumuli in maritime and continental air. Tellus 8 (4):443–4. doi:10.3402/tellusa.v8i4.9040.
  • Squires, P. 1958a. The microstructure and colloidal stability of warm clouds. Part I – The relation between structure and stability. Tellus 10 (2):256–61. doi:10.3402/tellusa.v10i2.9229.
  • Squires, P. 1958b. The microstructure and colloidal stability of warm clouds. Part II – The causes of the variations in microstructure. Tellus 10 (2):262–71. doi:10.3402/tellusa.v10i2.9228.
  • Teller, A., and Z. Levin. 2006. The effects of aerosols on precipitation and dimensions of subtropical clouds: A sensitivity study using a numerical cloud model. Atmos. Chem. Phys. 6 (1):67–80. doi:10.5194/acp-6-67-2006.
  • Twomey, S. 1959. The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geophys. Pure Appl. 43 (1):243–9. doi:10.1007/BF01993560.
  • Twomey, S. 1977. The Influence of Pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34:1149–52.
  • van den Heever, S. C., G. G. Carrió, W. R. Cotton, P. J. DeMott, and A. J. Prenni. 2006. Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci. 63 (7):1752–75. doi:10.1175/JAS3713.1.
  • von der Emde, K., and U. Wacker. 1993. Comments on the relationship between aerosol spectra, equilibrium drop size spectra and CCN spectra. Contrib. Atmos. Phys. 66:157–62.
  • Wang, C. 2005. A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res. 110:D21211. doi:10.1029/2004JD005720.
  • Warner, J., and S. Twomey. 1967. The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. J. Atmos. Sci. 24 (6):704–6. doi:10.1175/1520-0469(1967)024<0704:TPOCNB>2.0.CO;2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.