326
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Parameterization of polydisperse aerosol optical properties during hygroscopic growth

, , , , , , , & show all
Pages 713-726 | Received 21 Sep 2022, Accepted 30 Apr 2023, Published online: 05 Jun 2023

References

  • Almeida, G. P., A. T. Bittencourt, M. S. Evangelista, M. S. Vieira-Filho, and A. Fornaro. 2019. Characterization of aerosol chemical composition from urban pollution in Brazil and its possible impacts on the aerosol hygroscopicity and size distribution. Atmos. Environ. 202:149–59. doi:10.1016/j.atmosenv.2019.01.024.
  • Bain, A., A. Rafferty, and T. C. Preston. 2019. The wavelength-dependent complex refractive index of hygroscopic aerosol particles and other aqueous media: An effective oscillator model. Geophys. Res. Lett. 46 (17-18):10636–10645. doi:10.1029/2019GL084568.
  • Binkowski, F. S. 1999. Chapter 10: Aerosols in MODELS-3. Washington, DC: CMAQ.
  • Binkowski, F. S., and S. J. Roselle. 2003. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. 108 (D6):4183. doi:10.1029/2001JD001409.
  • Bohren, C. F., and D. R. Huffman. 1983. Absorption and scattering of light by small particles. New York: John Wiley & Sons.
  • Brock, C. A., N. L. Wagner, B. E. Anderson, A. R. Attwood, A. Beyersdorf, P. Campuzano-Jost, A. G. Carlton, D. A. Day, G. S. Diskin, T. D. Gordon, et al. 2016. Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth. Atmos. Chem. Phys. 16 (8):4987–5007. doi:10.5194/acp-16-4987-2016.
  • Byun, D. W., and K. L. Schere. 2006. Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 59 (2):51–77. doi:10.1115/1.2128636.
  • Chen, J., C. S. Zhao, N. Ma, and P. Yan. 2014. Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain. Atmos. Chem. Phys. 14 (15):8105–8118. doi:10.5194/acp-14-8105-2014.
  • Covert, D. S., R. J. Charlson, and N. C. Ahlquist. 1972. A study of the relationship of chemical composition and humidity to light scattering by aerosols. J. Appl. Meteor. 11 (6):968–976. doi:10.1175/1520-0450(1972)011<0968:ASOTRO>2.0.CO;2.
  • Crawford, J. H., J. Y. Ahn, J. Al-Saadi, L. Chang, L. K. Emmons, J. Kim, G. Lee, J. H. Park, R. J. Park, J. H. Woo, et al. 2021. The Korea–United States Air Quality (KORUS-AQ) field study. Elementa (Wash DC). 9 (1):1–27. doi:10.1525/elementa.2020.00163.
  • Cuevas-Robles, A., N. Soltani, B. Keshavarzi, J. S. Youn, A. B. MacDonald, and A. Sorooshian. 2021. Hygroscopic and chemical properties of aerosol emissions at a major mining facility in Iran: Implications for respiratory deposition. Atmos. Pollut. Res. 12 (3):292–301. doi:10.1016/j.apr.2020.12.015.
  • Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59 (3):590–608. doi:10.1175/1520-0469(2002)059 < 0590:VOAAOP>2.0.CO;2.
  • Eichler, H., Y. F. Cheng, W. Birmili, A. Nowak, A. Wiedensohler, E. Brüggemann, T. Gnauk, H. Herrmann, D. Althausen, and A. Ansmann. 2008. Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in South-Eastern China. Atmos. Environ. 42 (25):6321–6334. doi:10.1016/j.atmosenv.2008.05.007.
  • Erlick, C., J. P. D. Abbatt, and Y. Rudich. 2011. How different calculations of the refractive index affect estimates of the radiative forcing efficiency of ammonium sulfate aerosols. J. Atmos. Sci. 68 (9):1845–1852. doi:10.1175/2011JAS3721.1.
  • Fard, M. M., U. K. Krieger, and T. Peter. 2018. Shortwave radiative impact of liquid–liquid phase separation in brown carbon aerosols. Atmos. Chem. Phys. 18 (18):13511–13530. doi:10.5194/acp-18-13511-2018.
  • Ferrare, R. A., S. H. Melfi, D. N. Whiteman, K. D. Evans, M. Poellot, and Y. J. Kaufman. 1998. Raman lidar measurements of aerosol extinction and backscattering—2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements. J. Geophys. Res. 103 (D16):19673–19689. doi:10.1029/98JD01647.
  • Freedman, M. A., C. A. Hasenkopf, M. R. Beaver, and M. A. Tolbert. 2009. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate. J. Phys. Chem. A. 113 (48):13584–13592. PMID: 19877658. doi:10.1021/jp906240y.
  • Guyon, P., O. Boucher, B. Graham, J. Beck, O. L. Mayol-Bracero, G. C. Roberts, W. Maenhaut, P. Artaxo, and M. O. Andreae. 2003. Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999. J. Aerosol Sci. 34 (7):883–907. doi:10.1016/S0021-8502(03)00052-1.
  • Han, K. M., C. H. Jung, R. S. Park, S. Y. Park, S. Lee, M. Kulmala, T. Petäjä, G. Karasiński, P. Sobolewski, Y. J. Yoon, et al. 2021. Data assimilation of AOD and estimation of surface particulate matters over the Arctic. Appl. Sci. 11 (4):1959. doi:10.3390/app11041959.
  • Haywood, J., and O. Boucher. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 38 (4):513–543. doi:10.1029/1999RG000078.
  • He, Q., N. Bluvshtein, L. Segev, D. Meidan, J. M. Flores, S. S. Brown, W. Brune, and Y. Rudich. 2018. Evolution of the complex refractive index of secondary organic aerosols during atmospheric aging. Environ. Sci. Technol. 52 (6):3456–65. doi:10.1021/acs.est.7b05742.
  • Horvath, H., M. Kasaharat, and P. Pesava. 1996. The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. J. Aerosol Sci. 27 (3):417–435. doi:10.1016/0021-8502(95)00546-3.
  • Jung, C. H., Y. J. Yoon, J. Um, S. S. Lee, K. M. Han, H. J. Shin, J. Y. Lee, and Y. P. Kim. 2021. Approximated expression of the hygroscopic growth factor for polydispersed aerosols. J. Aerosol Sci. 151:105670. doi:10.1016/j.jaerosci.2020.105670.
  • Junge, C., and E. McLaren. 1971. Relationship of cloud nuclei spectra to aerosol size distribution and composition. J. Atmos. Sci. 28 (3):382–390. doi:10.1175/1520-0469(1971)028<0382:ROCNST>2.0.CO;2.
  • Jurányi, Z., and R. Weller. 2019. One year of aerosol refractive index measurement from a coastal Antarctic site. Atmos. Chem. Phys. 19 (22):14417–14430. doi:10.5194/acp-19-14417-2019.
  • Koike, M., N. Moteki, P. Khatri, T. Takamura, N. Takegawa, Y. Kondo, H. Hashioka, H. Matsui, A. Shimizu, and N. Sugimoto. 2014. Case study of absorption aerosol optical depth closure of black carbon over the East China Sea. J. Geophys. Res. Atmos. 119 (1):122–136. doi:10.1002/2013JD020163.
  • Kreidenweis, S. M., M. D. Petters, and P. J. DeMott. 2008. Single-parameter estimates of aerosol water content. Environ. Res. Lett. 3 (3):035002. doi:10.1088/1748-9326/3/3/035002.
  • Kuang, Y., C. Zhao, J. Tao, Y. Bian, N. Ma, and G. Zhao. 2017. A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system. Atmos. Chem. Phys. 17 (11):6651–6662. doi:10.5194/acp-17-6651-2017.
  • Lagrosas, N., G. Bagtasa, N. Manago, and H. Kuze. 2019. Influence of ambient relative humidity on seasonal trends of the scattering enhancement factor for aerosols in Chiba, Japan. Aerosol Air Qual. Res. 19 (8):1856–1871. doi:10.4209/aaqr.2018.07.0267.
  • Laskina, O. V., H. S. Morris, J. R. Grandquist, Z. Qin, E. A. Stone, A. V. Tivanski, and V. H. Grassian. 2015. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles. J. Phys. Chem. A. 119 (19):4489–4497. doi:10.1021/jp510268p.
  • Levin, E. J. T., A. J. Prenni, B. B. Palm, D. A. Day, P. Campuzano-Jost, P. M. Winkler, S. M. Kreidenweis, P. J. DeMott, J. L. Jimenez, and J. N. Smith. 2014. Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado. Atmos. Chem. Phys. 14 (5):2657–2667. doi:10.5194/acp-14-2657-2014.
  • Levoni, C., M. Cervino, R. Guzzi, and F. Torricella. 1997. Atmospheric aerosol optical properties: A database of radiative characteristics for different components and classes. Appl. Opt. 36 (30):8031–8041. doi:10.1364/Ao.36.008031.
  • Li, J., Z. Han, and R. Zhang. 2014. Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia. Atmos. Res 140-141:14–27. doi:10.1016/j.atmosres.2014.01.013.
  • Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill. 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. 99 (D1):1347–1370. doi:10.1029/93JD02916.
  • McFiggans, G., P. Artaxo, U. Baltensperger, H. Coe, M. C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonen, U. Lohmann, et al. 2006. The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 6 (9):2593–2649. doi:10.5194/acp-6-2593-2006.
  • Mico, S., A. Deda, E. Tsaousi, M. Alushllari, and P. Pomonis. 2019. Complex refractive index of aerosol samples. AIP Conf. Proc. 2109:060002. doi:10.1063/1.5110120.
  • Moise, T., J. M. Flores, and Y. Rudich. 2015. Optical properties of secondary organic aerosols and their changes by chemical processes. Chem. Rev. 115 (10):4400–4439. doi:10.1021/cr5005259.
  • Molnár, A., K. Imre, Z. Ferenczi, G. Kiss, and A. Gelencsér. 2020. Aerosol hygroscopicity: Hygroscopic growth proxy based on visibility for low-cost PM monitoring. Atmos. Res. 236:104815. doi:10.1016/j.atmosres.2019.104815.
  • Park, S. H., and K. W. Lee. 2000. Condensational growth of polydisperse aerosol for the entire particle size range. Aerosol Sci. Technol. 33 (3):222–227. doi:10.1080/027868200416213.
  • Petters, M. D., and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–1971. doi:10.5194/acp-7-1961-2007.
  • Pitchford, M., W. Maim, B. Schichtel, N. Kumar, D. Lowenthal, and J. Hand. 2007. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. J. Air Waste Manag. Assoc. 57 (11):1326–1336. doi:10.3155/1047-3289.57.11.1326.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken, NJ: John Wiley & Sons.
  • Shingler, T., E. Crosbie, A. Ortega, M. Shiraiwa, A. Zuend, A. Beyersdorf, L. Ziemba, B. Anderson, L. Thornhill, A. E. Perring, et al. 2016. Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC4RS campaign. JGR Atmos. 121 (8):4188–4210. doi:10.1002/2015JD024498.
  • Shulman, M. L., M. C. Jacobson, R. J. Carlson, R. E. Synovec, and T. E. Young. 1996. Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys. Res. Lett. 23 (3):277–280. doi:10.1029/95GL03810.
  • Sorooshian, A., S. M. Murphy, S. Hersey, H. Gates, L. T. Padro, A. Nenes, F. J. Brechtel, H. Jonsson, R. C. Flagan, and J. H. Seinfeld. 2008. Comprehensive airborne characterization of aerosol from a major bovine source. Atmos. Chem. Phys. 8 (17):5489–5520. doi:10.5194/acp-8-5489-2008.
  • Stevens, R., and A. A. Dastoor. 2019. A Review of the representation of aerosol mixing state in atmospheric models. Atmosphere. 10 (4):168. doi:10.3390/atmos10040168.
  • Stokes, R. H., and R. A. Robinson. 1966. Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. J. Phys. Chem. 70 (7):2126–2131. doi:10.1021/j100879a010.
  • Titos, G., A. Cazorla, P. Zieger, E. Andrews, H. Lyamani, M. J. Granados-Muñoz, F. J. Olmo, and L. Alados-Arboledas. 2016. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources. Atmos. Environ. 141:494–507. doi:10.1016/j.atmosenv.2016.07.021.
  • Topping, D. O., G. B. McFiggans, and H. Coe. 2005. A curved multi-component aerosol hygroscopicity model framework: Part 1 – Inorganic compounds. Atmos. Chem. Phys. 5 (5):1205–1222. doi:10.5194/acp-5-1205-2005.
  • Wang, W., and M. J. Rood. 2008. Real refractive index: Dependence on relative humidity and solute composition with relevancy to atmospheric aerosol particles. J. Geophys. Res. 113 (D23):D23305. doi:10.1029/2008JD010165.
  • Wang, X., X. J. Shen, J. Y. Sun, X. Y. Zhang, Y. Q. Wang, Y. M. Zhang, P. Wang, C. Xia, X. F. Qi, and J. T. Zhong. 2018. Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016. Atmos. Environ. 194:188–197. doi:10.1016/j.atmosenv.2018.09.041.
  • Wexler, A. S., and S. L. Clegg. 2002. Atmospheric aerosol models for systems including the ions H+, NH4, Na+, SO42−, NO3−, Cl−, Br− and H2O. J. Geophys. Res. 107 (D14):4207. doi:10.1029/2001JD000451.
  • Yao, Y., J. H. Curtis, J. Ching, Z. Zheng, and N. Riemer. 2022. Quantifying the effects of mixing state on aerosol optical properties. Atmos. Chem. Phys. 22 (14):9265–9282. doi:10.5194/acp-22-9265-2022.
  • Yu, Y., C. Zhao, Y. Kuang, J. Tao, G. Zhao, C. Shen, and W. Xu. 2018. A parameterization for the light scattering enhancement factor with aerosol chemical compositions. Atmos. Environ. 191:370–377. doi:10.1016/j.atmosenv.2018.08.016.
  • Zdanovskii, A. B. 1948. New methods for calculating solubilities of electrolytes in multicomponent systems. Zhur Fiz. Khim. 22:1475–1485.
  • Zeng, C., C. Liu, J. Li, B. Zhu, Y. Yin, and Y. Wang. 2019. Optical properties and radiative forcing of aged BC due to hygroscopic growth: Effects of the aggregate structure. J. Geophys. Res. Atmos. 124 (8):4620–4633. doi:10.1029/2018JD029809.
  • Zhang, F., Y. Li, Z. Li, L. Sun, R. Li, C. Zhao, P. Wang, Y. Sun, X. Liu, J. Li, et al. 2014. Aerosol hygroscopicity and cloud condensation nuclei activity during the AC3 Exp campaign: Implications for cloud condensation nuclei parameterization. Atmos. Chem. Phys. 14 (24):13423–13437. doi:10.5194/acp-14-13423-2014.
  • Zhao, P. S., S. S. Ge, J. Su, J. Ding, and Y. Kuang. 2022. Relative humidity dependence of hygroscopicity parameter of ambient aerosols. JGR Atmos. 127 (8):e2021JD035647. doi:10.1029/2021JD035647.
  • Zieger, P., R. Fierz-Schmidhauser, M. Gysel, J. Ström, S. Henne, K. E. Yttri, U. Baltensperger, and E. Weingartner. 2010. Effects of relative humidity on aerosol light scattering in the Arctic. Atmos. Chem. Phys. 10 (8):3875–3890. doi:10.5194/acp-10-3875-2010.
  • Zieger, P., R. Fierz-Schmidhauser, E. Weingartner, and U. Baltensperger. 2013. Effects of relative humidity on aerosol light scattering: Results from different European sites. Atmos. Chem. Phys. 13 (21):10609–10631. doi:10.5194/acp-13-10609-2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.