250
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical derivation of particle collision kernels and its enhancement at a high concentration from a first-time-passage approach in the diffusive regime

ORCID Icon & ORCID Icon
Pages 782-796 | Received 29 Jan 2023, Accepted 08 May 2023, Published online: 05 Jun 2023

References

  • Berezhkovskii, A., Y. A. Makhnovskii, and R. Suris. 1989. Wiener sausage volume moments. J. Stat. Phys. 57 (12):333–46. doi:10.1007/BF01023647.
  • Boje, A., and M. Kraft. 2022. Stochastic population balance methods for detailed modelling of flame-made aerosol particles. J. Aerosol Sci. 159:105895. doi:10.1016/j.jaerosci.2021.105895.
  • Dhaubhadel, R., C. S. Gerving, A. Chakrabarti, and C. M. Sorensen. 2007. Aerosol gelation: Synthesis of a novel, lightweight, high specific surface area material. Aerosol Sci. Technol. 41 (8):804–10. doi:10.1080/02786820701466291.
  • Domaschke, M., M. Schmidt, and W. Peukert. 2018. A model for the particle mass yield in the aerosol synthesis of ultrafine monometallic nanoparticles by spark ablation. J. Aerosol Sci. 126:133–42. doi:10.1016/j.jaerosci.2018.09.004.
  • Eggersdorfer, M. L., and S. E. Pratsinis. 2014. Agglomerates and aggregates of nanoparticles made in the gas phase. Adv. Powder Technol. 25 (1):71–90. doi:10.1016/j.apt.2013.10.010.
  • Ermak, D. L., and H. Buckholz. 1980. Numerical integration of the langevin equation: Monte Carlo simulation. Comput. Phys. 35 (2):169–82. doi:10.1016/0021-9991(80)90084-4.
  • Friedlander, S. K. 2000. Smoke, dust, and haze. Vol. 198. New York: Oxford University Press.
  • Fuchs, N. 1964. The mechanics of aerosols. New York: Dover Publications.
  • Gopalakrishnan, R., and C. J. Hogan. Jr. 2011. Determination of the transition regime collision kernel from mean first passage times. Aerosol Sci. Technol. 45 (12):1499–509. doi:10.1080/02786826.2011.601775.
  • Goudeli, E., M. L. Eggersdorfer, and S. E. Pratsinis. 2015. Coagulation–agglomeration of fractal-like particles: Structure and self-preserving size distribution. Langmuir 31 (4):1320–7. doi:10.1021/la504296z.
  • Gutsch, A., S. E. Pratsinis, and F. Löfer. 1995. Agglomerate structure and growth rate by trajectory calculations of monomer-cluster collisions. J. Aerosol Sci. 26 (2):187–99. doi:10.1016/0021-8502(94)00105-8.
  • Heine, M., and S. E. Pratsinis. 2007. Brownian coagulation at high concentration. Langmuir 23 (19):9882–90. doi:10.1021/la7012599.
  • Isella, L., and Y. Drossinos. 2010. Langevin agglomeration of nanoparticles interacting via a central potential. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82 (1 Pt 1):011404. doi:10.1103/PhysRevE.82.011404.
  • Kelesidis, G. A., E. Goudeli, and S. E. Pratsinis. 2017. Flame synthesis of functional nanostructured materials and devices: Surface growth and aggregation. Proc. Combust. Inst. 36 (1):29–50. doi:10.1016/j.proci.2016.08.078.
  • Kumar, S., and D. Ramkrishna. 1996. On the solution of population balance equations by discretization—ii. A moving pivot technique. Chem. Eng. Sci. 51 (8):1333–42. doi:10.1016/0009-2509(95)00355-X.
  • Lattuada, M. 2012. Predictive model for diffusion-limited aggregation kinetics of nanocolloids under high concentration. J. Phys. Chem. B 116 (1):120–9. doi:10.1021/jp2097839.
  • Li, L., and R. Gopalakrishnan. 2021. An experimentally validated model of diffusion charging of arbitrary shaped aerosol particles. J. Aerosol Sci. 151:105678. doi:10.1016/j.jaerosci.2020.105678.
  • Morán, J. 2022. On the link between the Langevin equation and the coagulation kernels of suspended nanoparticles. Fractal Fract. 6 (9):529. doi:10.3390/fractalfract6090529.
  • Morán, J., A. Fuentes, F. Liu, and J. Yon. 2019. Fracval: An improved tunable algorithm of cluster–cluster aggregation for generation of fractal structures formed by polydisperse primary particles. Comput. Phys. Commun. 239:225–37. doi:10.1016/j.cpc.2019.01.015.
  • Morán, J., A. Poux, and J. Yon. 2021. Impact of the competition between aggregation and surface growth on the morphology of soot particles formed in an ethylene laminar premixed flame. J. Aerosol Sci. 152:105690. doi:10.1016/j.jaerosci.2020.105690.
  • Morán, J., J. Yon, A. Poux, F. Corbin, F. X. Ouf, and A. Siméon. 2020. Monte Carlo aggregation code (MCAC) part 2: Application to soot agglomeration, highlighting the importance of primary particles. J. Colloid Interface Sci. 575:274–85. doi:10.1016/j.jcis.2020.04.085.
  • Otto, E., H. Fissan, S. Park, and K. Lee. 1999. The log-normal size distribution theory of Brownian aerosol coagulation for the entire particle size range: Part ii—analytical solution using Dahneke’s coagulation kernel. J. Aerosol Sci. 30 (1):17–34. doi:10.1016/S0021-8502(98)00038-X.
  • Ouyang, H., R. Gopalakrishnan, and C. J. Hogan Jr. 2012. Nanoparticle collisions in the gas phase in the presence of singular contact potentials. J. Chem. Phys. 137 (6):064316. doi:10.1063/1.4742064.
  • Park, S., and S. Rogak. 2004. A novel fixed-sectional model for the formation and growth of aerosol agglomerates. J. Aerosol Sci. 35 (11):1385–404. doi:10.1016/j.jaerosci.2004.05.010.
  • Piazza, F., G. Foffi, and C. De Michele. 2013. Irreversible bimolecular reactions with inertia: From the trapping to the target setting at finite densities. J. Phys. Condens. Matter 25 (24):245101. doi:10.1088/0953-8984/25/24/245101.
  • Polovnikov, P., I. Azarov, and M. Veshchunov. 2016. Advancement of the kinetic approach to Brownian coagulation on the base of the Langevin theory. J. Aerosol Sci. 96:14–23. doi:10.1016/j.jaerosci.2016.02.006.
  • Pratsinis, S. E. 1998. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24 (3):197–219. doi:10.1016/S0360-1285(97)00028-2.
  • Qian, W., A. Kronenburg, X. Hui, Y. Lin, and M. Karsch. 2022. Effects of agglomerate characteristics on their collision kernels in the free molecular regime. J. Aerosol Sci. 159:105868. doi:10.1016/j.jaerosci.2021.105868.
  • Rigopoulos, S. 2010. Population balance modelling of polydispersed particles in reactive flows. Prog. Energy Combust. Sci. 36 (4):412–43. doi:10.1016/j.pecs.2009.12.001.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. New York: Wiley.
  • Silverman, M. P. 2017. Brownian motion of decaying particles: Transition probability, computer simulation, and first-passage times. JMP. 08 (11):1809–49. doi:10.4236/jmp.2017.811108.
  • Smoluchowski, M. 1916. Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen. Z Angew. Phys. 17:557–85.
  • Sorensen, C., W. Hageman, T. Rush, H. Huang, and C. Oh. 1998. Aerogelation in a flame soot aerosol. Phys. Rev. Lett. 80 (8):1782–5. doi:10.1103/PhysRevLett.80.1782.
  • Suresh, V., and R. Gopalakrishnan. 2021. Tutorial: Langevin dynamics methods for aerosol particle trajectory simulations and collision rate constant modeling. J. Aerosol Sci. 155:105746. doi:10.1016/j.jaerosci.2021.105746.
  • Suresh, V., Z. Liu, Z. Perry, and R. Gopalakrishnan. 2022. Modeling particle-particle binary coagulation rate constants for spherical aerosol particles at high volume fractions using Langevin dynamics simulations. J. Aerosol Sci. 164:106001. doi:10.1016/j.jaerosci.2022.106001.
  • Thajudeen, T., R. Gopalakrishnan, and C. J. Hogan Jr. 2012. The collision rate of nonspherical particles and aggregates for all diffusive Knudsen numbers. Aerosol Sci. Technol. 46 (11):1174–86. doi:10.1080/02786826.2012.701353.
  • Trzeciak, T., A. Podgórski, and J. Marijnissen. 2006. Stochastic calculation of collision kernels: Brownian coagulation in concentrated systems. Orlando, FL: Fifth World Congress on Particle Technology.
  • Trzeciak, T. M., A. Podgórski, and J. C. Marijnissen. 2014. Brownian coagulation in dense systems: Thermal non-equilibrium effects. J. Aerosol Sci. 69:1–12. doi:10.1016/j.jaerosci.2013.11.004.
  • Veshchunov, M. 2010. A new approach to the brownian coagulation theory. J. Aerosol Sci. 41 (10):895–910. doi:10.1016/j.jaerosci.2010.07.001.
  • Veshchunov, M. 2012. Development of the new approach to the diffusion-limited reaction rate theory. J. Exp. Theor. Phys. 114:631–644.
  • Veshchunov, M., and V. Tarasov. 2014. Extension of the smoluchowski theory to transitions from dilute to dense regime of brownian coagulation: Triple collisions. Aerosol Sci. Technol. 48 (8):813–21. doi:10.1080/02786826.2014.931567.
  • Yuan, C., F. Laurent, and R. Fox. 2012. An extended quadrature method of moments for population balance equations. J. Aerosol Sci. 51:1–23. doi:10.1016/j.jaerosci.2012.04.003.
  • Zhang, H., H. Zhou, Y. Wang, S. Li, and P. Biswas. 2021. Mini review on gas-phase synthesis for energy nanomaterials. Energy Fuels 35 (1):63–85. doi:10.1021/acs.energyfuels.0c03264.
  • Zurita-Gotor, M., and D. Rosner. 2002. Effective diameters for collisions of fractal-like aggregates: Recommendations for improved aerosol coagulation frequency predictions. J. Colloid Interface Sci. 255 (1):10–26. doi:10.1006/jcis.2002.8634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.