154
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Performance analysis of a gas cyclone with a dustbin inverted hybrid solid cone

, , , &
Pages 911-924 | Received 22 Feb 2023, Accepted 19 May 2023, Published online: 01 Jun 2023

References

  • Babaoğlu, N. U., K. Elsayed, F. Parvaz, J. Foroozesh, S. H. Hosseini, and G. Ahmadi. 2022. Analysis and optimization of louvered separator using genetic algorithm and artificial neural network. Powder Technol. 398:117077. doi:10.1016/j.powtec.2021.117077.
  • Chen, G., J. Fan, P. Zhang, and W. Wang. 2020. Experimental and CFD investigation on effects of internals on the flow pattern and performance of a divergent cyclone separator. J. Taiwan Inst. Chem. Eng. 115:160–8. doi:10.1016/j.jtice.2020.10.011.
  • Dehdarinejad, E., and M. Bayareh. 2022a. Impact of non-uniform surface roughness on the erosion rate and performance of a cyclone separator. Chem. Eng. Sci. 249:117351. doi:10.1016/j.ces.2021.117351.
  • Dehdarinejad, E., and M. Bayareh. 2022b. Performance improvement of a cyclone separator using spiral guide vanes with variable pitch length. J. Braz. Soc. Mech. Sci. Eng. 44 (11):516. doi:10.1007/s40430-022-03788-1.
  • Dehdarinejad, E., and M. Bayareh. 2021. An overview of numerical simulations on gas-solid cyclone separators with tangential inlet. ChemBioEng Rev. 8 (4):375–91. doi:10.1002/cben.202000034.
  • Dehdarinejad, E., M. Bayareh, and M. Ashrafizaadeh. 2022. Impact of cone wall roughness on turbulence swirling flow in a cyclone separator. Chem. Pap. 76 (9):5579–99. doi:10.1007/s11696-022-02261-6.
  • Dehdarinejad, E., M. Bayareh, F. Parvaz, S. H. Hosseini, and G. Ahmadi. 2023. Performance analysis of a gas cyclone with a converging-diverging vortex finder. Chem. Eng. Res. Des. 193:587–99. doi:10.1016/j.cherd.2023.04.012.
  • Elsayed, K., and C. Lacor. 2012. The effect of the dust outlet geometry on the performance and hydrodynamics of gas cyclones. Comput. Fluids. 68:134–47. doi:10.1016/j.compfluid.2012.07.029.
  • Elsayed, K., F. Parvaz, S. H. Hosseini, and G. Ahmadi. 2020. Influence of the dipleg and dustbin dimensions on performance of gas cyclones: An optimization study. Sep. Purif. Technol. 239:116553. doi:10.1016/j.seppur.2020.116553.
  • Hoekstra, A. J. 2000. Gas flow field and collection efficiency of cyclone separators. TU Delft: Delft University of Technology.
  • Izadi, M., A. M. Makvand, E. Assareh, and F. Parvaz. 2020. Optimizing the design and performance of solid-liquid separators. Int. J. Thermofluids. 5–6:100033. doi:10.1016/j.ijft.2020.100033.
  • Karagoz, I., and F. Kaya. 2007. CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone. Int. Commun. Heat Mass Transf. 34 (9–10):1119–26. doi:10.1016/j.icheatmasstransfer.2007.05.017.
  • Kaya, F., I. Karagoz, and A. Avci. 2011. Effects of surface roughness on the performance of tangential inlet cyclone separators. Aerosol Sci. Technol. 45 (8):988–95. doi:10.1080/02786826.2011.574174.
  • Li, W., Z. Huang, G. Li, and C. Ye. 2022. Effects of different cylinder roof structures on the vortex of cyclone separators. Sep. Purif. Technol. 296 (May):121370. doi:10.1016/j.seppur.2022.121370.
  • Misiulia, D., A. G. Andersson, and T. S. Lundström. 2017. Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet. Powder Technol. 305:48–55. doi:10.1016/j.powtec.2016.09.050.
  • Misiulia, D., A. G. Andersson, and T. S. Lundström. 2015. Effects of the inlet angle on the flow pattern and pressure drop of a cyclone with helical-roof inlet. Chem. Eng. Res. Des. 102:307–21. doi:10.1016/j.cherd.2015.06.036.
  • Misiulia, D., P. K. Nedumaran, and S. Antonyuk. 2023. Effect of the discharging flap on particle separation in a cyclone. Chem. Eng. Technol. 46 (6):1098–105. doi:10.1002/ceat.202200487.
  • Obermair, S., and G. Staudinger. 2001. The dust outlet of a gas cyclone and its effects on separation efficiency. Chem. Eng. Technol. 24 (12):1259–63. doi:10.1002/1521-4125(200112)24:12 < 1259::AID-CEAT1259 > 3.0.CO;2-O.
  • Obermair, S., J. Woisetschläger, and G. Staudinger. 2003. Investigation of the flow pattern in different dust outlet geometries of a gas cyclone by laser Doppler anemometry. Powder Technol. 138 (2–3):239–51. doi:10.1016/j.powtec.2003.09.009.
  • Parvaz, F., S. H. Hosseini, G. Ahmadi, and K. Elsayed. 2017a. Impacts of the vortex finder eccentricity on the flow pattern and performance of a gas cyclone. Sep. Purif. Technol. 187:1–13. doi:10.1016/j.seppur.2017.06.046.
  • Parvaz, F., S. H. Hosseini, K. Elsayed, and G. Ahmadi. 2020. Influence of the dipleg shape on the performance of gas cyclones. Sep. Purif. Technol. 233 (May 2019):116000. doi:10.1016/j.seppur.2019.116000.
  • Parvaz, F., S. H. Hosseini, K. Elsayed, and G. Ahmadi. 2018. Numerical investigation of effects of inner cone on flow field, performance and erosion rate of cyclone separators. Sep. Purif. Technol. 201 (November 2017):223–37. doi:10.1016/j.seppur.2018.03.001.
  • Parvaz, F., S. M. Vahedi, M. Khandan, and E. Assareh. 2017b. Numerical investigation of the effects of geometry variation on the flow pattern and performance of gas-particle cyclones. Iran. J. Mech. Eng. 19 (4):101–22. doi:20.1001.1.25384775.1396.19.4.6.3.
  • Pechmanee, P., A. Namkanisorn, S. Wattananusorn, and E. Bumrungthaichaichan. 2021. CFD simulations of high efficiency gas cyclones: An influence of dustbin geometry. Comput. Aided Chem. Eng. 50:529–34. doi:10.1016/B978-0-323-88506-5.50084-X.
  • Su, Y., A. Zheng, and B. Zhao. 2011. Numerical simulation of effect of inlet configuration on square cyclone separator performance. Powder Technol. 210 (3):293–303. doi:10.1016/j.powtec.2011.03.034.
  • Vahedi, S. M., F. Parvaz, M. Kamali, and H. Jafari Jebeli. 2018a. Numerical investigation of the impact of inlet channel numbers on the flow pattern, performance, and erosion of gas-particle cyclone. Iran. J. Oil Gas Sci. Technol. 7 (4):59–78.
  • Vahedi, S. M., F. Parvaz, M. Khandan Bakavoli, and M. Kamali. 2018b. Surface roughness effect of on vortex length and efficiency of the gas-oil cyclone through CFD modelling. Iran. J. Oil Gas Sci. Technol. 0 (1):68–84. doi:10.22050/ijogst.2018.102377.1417.
  • Vahedi, S. M., F. Parvaz, R. Rafee, and M. Khandan Bakavoli. 2018c. Computational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones. J. Heat Mass Transf. Res. 5 (1):27–38. doi:10.22075/jhmtr.2017.1503.1100.
  • Wang, S., H. Li, R. Wang, X. Wang, R. Tian, and Q. Sun. 2019. Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM. Adv. Powder Technol. 30 (2):227–39. doi:10.1016/j.apt.2018.10.027.
  • Wasilewski, M. 2017. Analysis of the effect of counter-cone location on cyclone separator efficiency. Sep. Purif. Technol. 179:236–47. doi:10.1016/j.seppur.2017.02.012.
  • Yao, Y., Z. Huang, T. Zhou, J. Li, L. Cheng, M. Zhang, H. Yang, and J. Lyu. 2022. Double-eccentric design for the vortex finder of a cyclone separator. Ind. Eng. Chem. Res. 61 (40):14927–39. doi:10.1021/acs.iecr.2c02054.
  • Yoshida, H. 2013. Effect of apex cone shape and local fluid flow control method on fine particle classification of gas-cyclone. Chem. Eng. Sci. 85:55–61. doi:10.1016/j.ces.2012.01.060.
  • Yoshida, H., K. Fukui, K. Yoshida, and E. Shinoda. 2001. Particle separation by Iinoya’s type gas cyclone. Powder Technol. 118 (1–2):16–23. doi:10.1016/S0032-5910(01)00290-X.
  • Yoshida, H., Y. Nishimura, K. Fukui, and T. Yamamoto. 2010. Effect of apex cone shape on fine particle classification of gas-cyclone. Powder Technol. 204 (1):54–62. doi:10.1016/j.powtec.2010.07.006.
  • Yoshida, H., K. Ono, and K. Fukui. 2005. The effect of a new method of fluid flow control on submicron particle classification in gas-cyclones. Powder Technol. 149 (2–3):139–47. doi:10.1016/j.powtec.2004.10.005.
  • Zhang, G., G. Chen, and X. Yan. 2018. Evaluation and improvement of particle collection efficiency and pressure drop of cyclones by redistribution of dustbins. Chem. Eng. Res. Des. 139:52–61. doi:10.1016/j.cherd.2018.09.021.
  • Zhao, B. 2005. Development of a new method for evaluating cyclone efficiency. Chem. Eng. Process. 44 (4):447–51. doi:10.1016/j.cep.2004.06.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.