226
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Comprehensive characterization of particulate matter emissions produced by a liquid-fueled miniCAST burner

, , , & ORCID Icon
Pages 872-889 | Received 26 Jan 2023, Accepted 13 Jun 2023, Published online: 06 Jul 2023

References

  • Agudelo, J. R., A. Álvarez, and O. Armas. 2014. Impact of crude vegetable oils on the oxidation reactivity and nanostructure of diesel particulate matter. Combust. Flame 161 (11):2904–15. doi:10.1016/j.combustflame.2014.05.013.
  • Ångström, A. 1929. On the atmospheric transmission of sun radiation and on dust in the air. Geogr. Ann. 11 (2):156–66.
  • Bernstein, J. A., N. Alexis, C. Barnes, I. L. Bernstein, J. A. Bernstein, A. Nel, D. Peden, D. Diaz-Sanchez, S. M. Tarlo, and P. B. Williams. 2004. Health effects of air pollution. J. Allergy Clin. Immunol. 114 (5):1116–23. doi:10.1016/j.jaci.2004.08.030.
  • Bescond, A., J. Yon, F.-X. Ouf, C. Rozé, A. Coppalle, P. Parent, D. Ferry, and C. Laffon. 2016. Soot optical properties determined by analyzing extinction spectra in the visible near-UV: Toward an optical speciation according to constituents and structure. J. Aerosol Sci. 101:118–32. doi:10.1016/j.jaerosci.2016.08.001.
  • Bescond, A., J. Yon, F.-X. Ouf, D. Ferry, D. Delhaye, D. Gaffié, A. Coppalle, and C. Rozé. 2014. Automated determination of aggregate primary particle size distribution by TEM image analysis: Application to soot. Aerosol Sci. Technol. 48 (8):831–41. doi:10.1080/02786826.2014.932896.
  • Bischof, O. F., P. Weber, U. Bundke, A. Petzold, and A. Kiendler-Scharr. 2020. Characterization of the miniaturized inverted flame burner as a combustion source to generate a nanoparticle calibration aerosol. Emiss. Control Sci. Technol. 6 (1):37–46. doi:10.1007/s40825-019-00147-w.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118 (11):5380–552. doi:10.1002/jgrd.50171.
  • Bourdrel, T., M.-A. Bind, Y. Béjot, O. Morel, and J.-F. Argacha. 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11):634–42. doi:10.1016/j.acvd.2017.05.003.
  • Cadrazco, M., A. Santamaría, and J. R. Agudelo. 2019. Chemical and nanostructural characteristics of the particulate matter produced by renewable diesel fuel in an automotive diesel engine. Combust. Flame 203:130–42. doi:10.1016/j.combustflame.2019.02.010.
  • Catalytic Instruments GmbH & Co.KG. 2020. Application note CI-0009.
  • Caumont-Prim, C., J. Yon, A. Coppalle, F.-X. Ouf, and K. F. Ren. 2013. Measurement of aggregates’ size distribution by angular light scattering. J. Quant. Spectrosc. Radiat. Transfer 126:140–9. doi:10.1016/j.jqsrt.2012.07.029.
  • Choi, M. Y., G. W. Mulholland, A. Hamins, and T. Kashiwagi. 1995. Comparisons of the soot volume fraction using gravimetric and light extinction techniques. Combust. Flame 102 (1–2):161–9. doi:10.1016/0010-2180(94)00282-W.
  • Durdina, L., P. Lobo, M. B. Trueblood, E. A. Black, S. Achterberg, D. E. Hagen, B. T. Brem, and J. Wang. 2016. Response of real-time black carbon mass instruments to mini-CAST soot. Aerosol Sci. Technol. 50 (9):906–18. doi:10.1080/02786826.2016.1204423.
  • EN 590. 2022. Automotive fuels - Diesel - Requirements and test methods. Brussels: CEN.
  • Ess, M. N., and K. Vasilatou. 2019. Characterization of a new miniCAST with diffusion flame and premixed flame options: Generation of particles with high EC content in the size range 30 nm to 200 nm. Aerosol Sci. Technol 53 (1):29–44. doi:10.1080/02786826.2018.1536818.
  • Ess, M. N., M. Bertò, M. Irwin, R. L. Modini, M. Gysel-Beer, and K. Vasilatou. 2021. Optical and morphological properties of soot particles generated by the miniCAST 5201 BC generator. Aerosol Sci. Technol 55 (7):828–47. doi:10.1080/02786826.2021.1901847.
  • EU. 2020. COMMISSION REGULATION (EU) 2018/1832 of 5 November 2018: Amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No 692/2008 and Commission Regulation (EU) 2017/1151 for the purpose of improving the emission type approval tests and procedures for light passenger and commercial vehicles, including those for in-service conformity and real-driving emissions and introducing devices for monitoring the consumption of fuel and electric energy.
  • Ghazi, R., H. Tjong, A. Soewono, S. N. Rogak, and J. S. Olfert. 2013. Mass, mobility, volatility, and morphology of soot particles generated by a McKenna and inverted burner. Aerosol Sci. Technol. 47 (4):395–405. doi:10.1080/02786826.2012.755259.
  • Gonzalez, A. 2020. Air quality in Europe - 2020 report (No. No 09/2020). EEA report Publications Office of the European Union, Luxembourg.
  • Greenberg, P. S., and J. C. Ku. 1997. Soot volume fraction imaging. Appl. Opt. 36 (22):5514–22. doi:10.1364/ao.36.005514.
  • Gwaze, P., O. Schmid, H. J. Annegarn, M. O. Andreae, J. Huth, and G. Helas. 2006. Comparison of three methods of fractal analysis applied to soot aggregates from wood combustion. J. Aerosol Sci. 37 (7):820–38. doi:10.1016/j.jaerosci.2005.06.007.
  • IPCC. 2022. Climate change 2022: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, ed. H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, and B. Rama. Cambridge, UK: Cambridge University Press, 3056 pp.
  • Jacobson, M. Z. 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409 (6821):695–7. doi:10.1038/35055518.
  • Kärcher, B. 2018. Formation and radiative forcing of contrail cirrus. Nat. Commun. 9 (1):1824. doi:10.1038/s41467-018-04068-0.
  • Kätzel, U., M. Vorbau, M. Stintz, T. Gottschalk-Gaudig, and H. Barthel. 2008. Dynamic light scattering for the characterization of polydisperse fractal systems: II. Relation between structure and DLS results. Part. Part. Syst. Charact. 25 (1):19–30. doi:10.1002/ppsc.200700005.
  • Kazemimanesh, M., A. Moallemi, K. A. Thomson, G. J. Smallwood, P. Lobo, and J. S. Olfert. 2019. A novel miniature inverted-flame burner for the generation of soot nanoparticles. Aerosol Sci. Technol. 53 (2):184–95. doi:10.1080/02786826.2018.1556774.
  • Kelesidis, G. A., and S. E. Pratsinis. 2021. Determination of the volume fraction of soot accounting for its composition and morphology. Proc. Combust. Inst. 38 (1):1189–96. doi:10.1016/j.proci.2020.07.055.
  • Kelesidis, G. A., and S. E. Pratsinis. 2022. Santoro flame: The volume fraction of soot accounting for its morphology & composition. Combust. Flame 240:112025. doi:10.1016/j.combustflame.2022.112025.
  • Kim, J., H. Bauer, T. Dobovičnik, R. Hitzenberger, D. Lottin, D. Ferry, D, and A. Petzold. 2015. Assessing optical properties and refractive index of combustion aerosol particles through combined experimental and modeling studies. Aerosol Sci. Technol. 49 (5):340–50. doi:10.1080/02786826.2015.1020996.
  • Kopnina, H. 2017. Vehicular air pollution and asthma: Implications for education for health and environmental sustainability. Local Environ. 22 (1):38–48. doi:10.1080/13549839.2016.1154519.
  • Köylü, U. O., G. M. Faeth, T. L. Farias, and M. G. Carvalho. 1995. Fractal and projected structure properties of soot aggregates. Combust. Flame 100 (4):621–33. doi:10.1016/0010-2180(94)00147-K.
  • Kulkarni, P., P. A. Baron, C. M. Sorensen, and K. Willeke. 2011. Nonspherical particle measurement: Shape factor, fractals, and fibers. In Aerosol Measurement: Principles, Techniques, and Applications, eds P. Kulkarni, P. A. Baron and K. Willeke, 507–547. 3rd ed. Hoboken, NJ/USA: John Wiley & Sons, Inc.
  • Lapuerta, M., J. Rodríguez–Fernández, and J. Sánchez-Valdepeñas. 2020. Soot reactivity analysis and implications on diesel filter regeneration. Prog. Energy Combust. Sci. 78:100833. doi:10.1016/j.pecs.2020.100833.
  • Lapuerta, M., R. Ballesteros, and F. J. Martos. 2006. A method to determine the fractal dimension of diesel soot agglomerates. J. Colloid Interface Sci. 303 (1):149–58. doi:10.1016/j.jcis.2006.07.066.
  • Lefevre, G., J. Yon, F. Liu, and A. Coppalle. 2018. Spectrally resolved light extinction enhancement of coated soot particles. Atmos. Environ. 186:89–101. doi:10.1016/j.atmosenv.2018.05.029.
  • Li, Z., C. Song, J. Song, G. Lv, S. Dong, and Z. Zhao. 2011. Evolution of the nanostructure, fractal dimension and size of in-cylinder soot during diesel combustion process. Combust. Flame 158 (8):1624–30. doi:10.1016/j.combustflame.2010.12.006.
  • Malmborg, V. B., A. C. Eriksson, S. Török, Y. Zhang, K. Kling, J. Martinsson, E. C. Fortner, L. Gren, S. Kook, S. T. B. Onasch, et al. 2019. Relating aerosol mass spectra to composition and nanostructure of soot particles. Carbon 142:535–46. doi:10.1016/j.carbon.2018.10.072.
  • Mamakos, A., I. Khalek, R. Giannelli, and M. Spears. 2013. Characterization of combustion aerosol produced by a mini-CAST and treated in a catalytic stripper. Aerosol Sci. Technol. 47 (8):927–36. doi:10.1080/02786826.2013.802762.
  • Marhaba, I., D. Ferry, C. Laffon, T. Z. Regier, F.-X. Ouf, and P. Parent. 2019. Aircraft and MiniCAST soot at the nanoscale. Combust. Flame 204:278–89. doi:10.1016/j.combustflame.2019.03.018.
  • Migliorini, F., K. A. Thomson, and G. J. Smallwood. 2011. Investigation of optical properties of aging soot. Appl. Phys. B 104 (2):273–83. doi:10.1007/s00340-011-4396-4.
  • Moallemi, A., M. Kazemimanesh, J. C. Corbin, K. A. Thomson, G. J. Smallwood, J. S. Olfert, and P. Lobo. 2019. Characterization of black carbon particles generated by a propane-fueled miniature inverted soot generator. J. Aerosol Sci. 135:46–57. doi:10.1016/j.jaerosci.2019.05.004.
  • Moore, R. H., L. D. Ziemba, D. Dutcher, A. J. Beyersdorf, K. Chan, S. Crumeyrolle, T. M. Raymond, K. L. Thornhill, E. L. Winstead, and B. E. Anderson. 2014. Mapping the operation of the miniature combustion aerosol standard (mini-CAST) soot generator. Aerosol Sci. Technol. 48 (5):467–79. doi:10.1080/02786826.2014.890694.
  • Mueller, L., J. Schnelle-Kreis, G. Jakobi, J. Orasche, L. Jing, F. Canonaco, A. S. H. Prevot, and R. Zimmermann. 2016. Combustion process apportionment of carbonaceous particulate emission from a diesel fuel burner. J. Aerosol Sci. 100:61–72. doi:10.1016/j.jaerosci.2016.06.003.
  • Ouf, F.-X., J. Yon, P. Ausset, A. Coppalle, and M. Maillé. 2010. Influence of sampling and storage protocol on fractal morphology of soot studied by transmission electron microscopy. Aerosol Sci. Technol. 44 (11):1005–17. doi:10.1080/02786826.2010.507228.
  • Pope III, C. A. >R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 287 (9):1132–41. doi:10.1001/jama.287.9.1132.
  • Popovicheva, O. B., and A. M. Starik. 2007. Aircraft-generated soot aerosols: Physicochemical properties and effects of emission into the atmosphere. Izv. Atmos. Ocean. Phys. 43 (2):125–41. doi:10.1134/S0001433807020016.
  • Ranft, U., T. Schikowski, D. Sugiri, J. Krutmann, and U. Krämer. 2009. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ. Res. 109 (8):1004–11. doi:10.1016/j.envres.2009.08.003.
  • Rogak, S. N., R. C. Flagan, and H. V. Nguyen. 1993. The mobility and structure of aerosol agglomerates. Aerosol Sci. Technol. 18 (1):25–47. doi:10.1080/02786829308959582.
  • Saffaripour, M., L.-L. Tay, K. A. Thomson, G. J. Smallwood, B. T. Brem, L. Durdina, and M. Johnson. 2017. Raman spectroscopy and TEM characterization of solid particulate matter emitted from soot generators and aircraft turbine engines. Aerosol Sci. Technol. 51 (4):518–31. doi:10.1080/02786826.2016.1274368.
  • Santoro, R. J., and J. H. Miller. 1987. Soot particle formation in laminar diffusion flames. Langmuir 3 (2):244–54. doi:10.1021/la00074a018.
  • Santoro, R. J., H. G. Semerjian, and R. A. Dobbins. 1983. Soot particle measurements in diffusion flames. Combust. Flame 51:203–18. doi:10.1016/0010-2180(83)90099-8.
  • Schnaiter, M., H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck. 2003. UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci. 34 (10):1421–44. doi:10.1016/S0021-8502(03)00361-6.
  • Schnaiter, M., M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke. 2006. Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion. Atmos. Chem. Phys. 6 (10):2981–90. doi:10.5194/acp-6-2981-2006.
  • Schumann, U. 2005. Formation, properties and climatic effects of contrails. Comptes Rendus Phys. 6 (4-5):549–65. doi:10.1016/j.crhy.2005.05.002.
  • Seinfeld, J. H. 1998. Clouds, contrails and climate. Nature 391 (6670):837–8. doi:10.1038/35974.
  • Simonsson, J., N.-E. Olofsson, S. Török, S. P.-E. Bengtsson, and H. Bladh. 2015. Wavelength dependence of extinction in sooting flat premixed flames in the visible and near-infrared regimes. Appl. Phys. B 119 (4):657–67. doi:10.1007/s00340-015-6079-z.
  • Sipkens, T. A., and S. N. Rogak. 2021. Technical note: Using k-means to identify soot aggregates in transmission electron microscopy images. J. Aerosol Sci. 152:105699. doi:10.1016/j.jaerosci.2020.105699.
  • Sipkens, T. A., M. Frei, A. Baldelli, P. Kirchen, F. E. Kruis, and S. N. Rogak. 2021. Characterizing soot in TEM images using a convolutional neural network. Powder Technol. 387:313–24. doi:10.1016/j.powtec.2021.04.026.
  • Snelling, D. R., F. Liu, G. J. Smallwood, and Ö. L. Gülder. 2004. Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame. Combust. Flame 136 (1–2):180–90. doi:10.1016/j.combustflame.2003.09.013.
  • Sorensen, C. M. 2001. Light scattering by fractal aggregates: A review. Aerosol Sci. Technol. 35 (2):648–87. doi:10.1080/02786820117868.
  • Sorensen, C. M., and G. C. Roberts. 1997. The prefactor of fractal aggregates. J. Colloid Interface Sci. 186 (2):447–52. doi:10.1006/jcis.1996.4664.
  • Soriano, J. A., J. R. Agudelo, A. F. López, and O. Armas. 2017. Oxidation reactivity and nanostructural characterization of the soot coming from farnesane - A novel diesel fuel derived from sugar cane. Carbon 125:516–29. doi:10.1016/j.carbon.2017.09.090.
  • Swinehart, D. F. 1962. The Beer-Lambert Law. J. Chem. Educ. 39 (7):333. doi:10.1021/ed039p333.
  • Török, S., V. B. Malmborg, J. Simonsson, A. Eriksson, J. Martinsson, M. Mannazhi, J. Pagels, and P.-E. Bengtsson. 2018. Investigation of the absorption Ångström exponent and its relation to physicochemical properties for mini-CAST soot. Aerosol Sci. Technol. 52 (7):757–67. doi:10.1080/02786826.2018.1457767.
  • Tregrossi, A., R. Barbella, A. Ciajolo, and M. Alfè. 2007. Spectral properties of soot in the uv-visible range. Combust. Sci. Technol. 179 (1–2):371–85. doi:10.1080/00102200600835592.
  • U.S. Energy Information Administration. 2021. International energy outlook 2021 with projections to 2050.
  • Wang, G. M., and C. M. Sorensen. 1999. Diffusive mobility of fractal aggregates over the entire Knudsen number range. Phys. Rev. E Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Top. 60 (3):3036–44. doi:10.1103/physreve.60.3036.
  • Ye, P., C. Sun, M. Lapuerta, J. Agudelo, R. V. Wal, A. L. Boehman, T. J. Toops, and S. Daw. 2016. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine. Int. J. Engine Res. 17 (2):193–208. doi:10.1177/1468087414564229.
  • Yon, J., A. Bescond, and F.-X. Ouf. 2015. A simple semi-empirical model for effective density measurements of fractal aggregates. J. Aerosol Sci. 87:28–37. doi:10.1016/j.jaerosci.2015.05.003.
  • Yon, J., R. Lemaire, E. Therssen, P. Desgroux, A. Coppalle, and K. F. Ren. 2011. Examination of wavelength dependent soot optical properties of diesel and diesel/rapeseed methyl ester mixture by extinction spectra analysis and LII measurements. Appl. Phys. B 104 (2):253–71. doi:10.1007/s00340-011-4416-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.