271
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of a two-column particle sizer (TC-PS) for simultaneous measurements of particle concentration and size distribution

, , ORCID Icon &
Pages 903-910 | Received 23 Jan 2023, Accepted 27 Jun 2023, Published online: 17 Jul 2023

References

  • Ahn, K. H., and B. Y. H. Liu. 1990a. Particle activation and droplet growth processes in condensation nucleus counter-II. Experimental study. J. Aerosol Sci. 21 (2):263–75. doi: 10.1016/0021-8502(90)90009-M.
  • Ahn, K. H., and B. Y. H. Liu. 1990b. Particle activation and droplet growth processes in condensation nucleus counter-I. Theoretical background. J. Aerosol Sci. 21 (2):249–61. doi: 10.1016/0021-8502(90)90008-L.
  • Barmpounis, K., A. Ranjithkumar, A. Schmidt-Ott, M. Attoui, and G. Biskos. 2018. Enhancing the detection efficiency of condensation particle counters for sub-2 nm particles. J. Aerosol Sci. 117 (December 2017):44–53. doi: 10.1016/j.jaerosci.2017.12.005.
  • Bau, S., A. Toussaint, R. Payet, and O. Witschger. 2017. Performance study of various condensation particle counters (CPCs): Development of a methodology based on steady-state airborne DEHS particles and application to a series of handheld and stationary CPCs. J. Phys. Conf. Ser. 838 (1):012002. doi: 10.1088/1742-6596/838/1/012002.
  • Butt, E. W., A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, et al. 2016. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmos. Chem. Phys. 16 (2):873–905. doi: 10.5194/acp-16-873-2016.
  • Carnerero, C., N. Pérez, C. Reche, M. Ealo, G. Titos, H. K. Lee, H. R. Eun, Y. H. Park, L. Dada, P. Paasonen, et al. 2018. Vertical and horizontal distribution of regional new particle formation events in Madrid. Atmos. Chem. Phys. 18 (22):16601–18. doi: 10.5194/acp-18-16601-2018.
  • Chang, C. C., J. L. Wang, C. Y. Chang, M. C. Liang, and M. R. Lin. 2016. Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies. Chemosphere 144:484–92. doi: 10.1016/j.chemosphere.2015.08.028.
  • Deng, W., Z. Fang, Z. Wang, M. Zhu, Y. Zhang, M. Tang, W. Song, S. Lowther, Z. Huang, K. Jones, et al. 2020. Primary emissions and secondary organic aerosol formation from in-use diesel vehicle exhaust: Comparison between idling and cruise mode. Sci. Total Environ. 699 (September 2019):134357. doi: 10.1016/j.scitotenv.2019.134357.
  • Dubey, R., A. K. Patra, and Nazneen. 2022. Vertical profile of particulate matter: A review of techniques and methods. Air Qual. Atmos. Heal. 15:979–1010. doi: 10.1007/s11869-022-01192-1.
  • Fofie, E. A., N. M. Donahue, and A. Asa-Awuku. 2018. Cloud condensation nuclei activity and droplet formation of primary and secondary organic aerosol mixtures. Aerosol Sci. Technol. 52 (2):242–51. doi: 10.1080/02786826.2017.1392480.
  • Gu, Q., D. R. Michanowicz, and C. Jia. 2018. Developing a modular unmanned aerial vehicle (UAV) platform for air pollution profiling. Sensors 18 (12):4363. doi: 10.3390/s18124363.
  • Han, Y., X. Fang, T. Zhao, and S. Kang. 2008. Long range trans-Pacific transport and deposition of Asian dust aerosols. J. Environ. Sci. 20 (4):424–8. doi: 10.1016/S1001-0742(08)62074-4.
  • Hering, S. V., M. R. Stolzenburg, F. R. Quant, D. R. Oberreit, and P. B. Keady. 2005. A laminar-flow, water-based condensation particle counter (WCPC). Aerosol Sci. Technol. 39 (7):659–72. doi: 10.1080/02786820500182123.
  • Hermann, M., B. Wehner, O. Bischof, H. S. Han, T. Krinke, W. Liu, A. Zerrath, and A. Wiedensohler. 2007. Particle counting efficiencies of new TSI condensation particle counters. J. Aerosol Sci. 38 (6):674–82. doi: 10.1016/j.jaerosci.2007.05.001.
  • Hinds, W. C. 1999. Aerosol technology. In Properties, behavior and measurement of airborne particles, 2nd ed. New York: John Wiley & Sons.
  • Iida, K., M. R. Stolzenburg, and P. H. McMurry. 2009. Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci. Technol. 43 (1):81–96. doi: 10.1080/02786820802488194.
  • Iida, K., M. R. Stolzenburg, P. H. McMurry, J. N. Smith, F. R. Quant, D. R. Oberreit, P. B. Keady, A. Eiguren-Fernandez, G. S. Lewis, N. M. Kreisberg, et al. 2008. An ultrafine, water-based condensation particle counter and its evaluation under field conditions. Aerosol Sci. Technol. 42 (10):862–71. doi: 10.1080/02786820802339579.
  • Jiang, J., M. Attoui, M. Heim, N. A. Brunelli, P. H. McMurry, G. Kasper, R. C. Flagan, K. Giapis, and G. Mouret. 2011. Transfer functions and penetrations of five differential mobility analyzers for sub-2 nm particle classification. Aerosol Sci. Technol. 45 (4):480–92. doi: 10.1080/02786826.2010.546819.
  • Kesten, J., A. Reineking, and J. Porstendörfer. 1991. Calibration of a TSI model 3025 ultrafine condensation particle counter. Aerosol Sci. Technol. 15 (2):107–11. doi: 10.1080/02786829108959517.
  • Knox, A., G. J. Evans, J. R. Brook, X. Yao, C. H. Jeong, K. J. Godri, K. Sabaliauskas, and J. G. Slowik. 2009. Mass absorption cross-section of ambient black carbon aerosol in relation to chemical age. Aerosol Sci. Technol. 43 (6):522–32. doi: 10.1080/02786820902777207.
  • Kuuluvainen, H., T. Rönkkö, A. Järvinen, S. Saari, P. Karjalainen, T. Lähde, L. Pirjola, J. V. Niemi, R. Hillamo, and J. Keskinen. 2016. Lung deposited surface area size distributions of particulate matter in different urban areas. Atmos. Environ. 136:105–13. doi: 10.1016/j.atmosenv.2016.04.019.
  • Kwon, H. S., M. H. Ryu, and C. Carlsten. 2020. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 52 (3):318–28. doi: 10.1038/s12276-020-0405-1.
  • Lee, H., and S. J. Yook. 2014. Deposition velocity of particles in charge equilibrium onto a flat plate in parallel airflow under the influence of simultaneous electrophoresis and thermophoresis. J. Aerosol Sci. 67:166–76. doi: 10.1016/j.jaerosci.2013.10.006.
  • Liu, Z., M. Osborne, K. Anderson, J. D. Shutler, A. Wilson, J. Langridge, S. H. L. Yim, H. Coe, S. Babu, S. K. Satheesh, et al. 2021. Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone. Atmos. Meas. Tech. 14 (9):6101–18. doi: 10.5194/amt-14-6101-2021.
  • McMurry, P. H. 2000. The history of condensation nucleus counters. Aerosol Sci. Technol. 33 (4):297–322. doi: 10.1080/02786820050121512.
  • Moreno, T., C. Reche, K. H. Ahn, H. R. Eun, W. Y. Kim, H. S. Kim, A. Fernández-Iriarte, F. Amato, and X. Querol. 2020. Using miniaturised scanning mobility particle sizers to observe size distribution patterns of quasi-ultrafine aerosols inhaled during city commuting. Environ. Res. 191:109978. doi: 10.1016/j.envres.2020.109978.
  • Petäjä, T., G. Mordas, H. Manninen, P. P. Aalto, K. Hämeri, and M. Kulmala. 2006. Detection Efficiency of a water-based TSI condensation particle counter 3785. Aerosol Sci. Technol. 40 (12):1090–7. doi: 10.1080/02786820600979139.
  • Picard, D., M. Attoui, and K. Sellegri. 2019. B3010: A boosted TSI 3010 condensation particle counter for airborne studies. Atmos. Meas. Tech. 12 (4):2531–43. doi: 10.5194/amt-12-2531-2019.
  • Pierce, J. R., B. Croft, J. K. Kodros, S. D. D'Andrea, and R. V. Martin. 2015. The importance of interstitial particle scavenging by cloud droplets in shaping the remote aerosol size distribution and global aerosol-climate effects. Atmos. Chem. Phys. 15 (11):6147–58. doi: 10.5194/acp-15-6147-2015.
  • Querol, X., G. Gangoiti, E. Mantilla, A. Alastuey, M. C. Minguillón, F. Amato, C. Reche, M. Viana, T. Moreno, A. Karanasiou, et al. 2017. Phenomenology of high-ozone episodes in NE Spain. Atmos. Chem. Phys. 17 (4):2817–38. doi: 10.5194/acp-17-2817-2017.
  • Schraufnagel, D. E. 2020. The health effects of ultrafine particles. Exp. Mol. Med. 52 (3):311–7. doi: 10.1038/s12276-020-0403-3.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 42 (6):421–32. doi: 10.1080/02786820802157823.
  • Stolzenburg, M. R., and P. H. McMurry. 1991. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 14 (1):48–65. doi: 10.1080/02786829108959470.
  • Zhang, Z. Y., and M. S. Wong. 2016. Evaluation of the representativeness of ground-based visibility for analysis the spatial and temporal variability of aerosol optical thickness in China. International Geoscience and Remote Sensing Symposium, November 2016, 370–3. doi: 10.1109/IGARSS.2016.7729090.
  • Zhu, B., H. Wang, L. Shen, H. Kang, and X. Yu. 2013. Aerosol spectra and new particle formation observed in various seasons in Nanjing. Adv. Atmos. Sci. 30 (6):1632–44. doi: 10.1007/s00376-013-2202-4.
  • Zhu, Y., Z. Wu, Y. Park, X. Fan, D. Bai, P. Zong, B. Qin, X. Cai, and K. H. Ahn. 2019. Measurements of atmospheric aerosol vertical distribution above North China Plain using hexacopter. Sci. Total Environ. 665:1095–102. doi: 10.1016/j.scitotenv.2019.02.100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.