347
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of drone-based filter sampling system for carbonaceous aerosol analysis using thermal–optical transmittance method

, ORCID Icon, , , , , , & show all
Pages 861-871 | Received 19 Feb 2023, Accepted 07 Jul 2023, Published online: 20 Jul 2023

References

  • Bates, T. S., P. K. Quinn, J. E. Johnson, A. Corless, F. J. Brechtel, S. E. Stalin, C. Meinig, and J. F. Burkhart. 2013. Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS). Atmos. Meas. Tech. 6 (8):2115–20. doi:10.5194/amt-6-2115-2013.
  • Birch, M. E. 2016. Monitoring diesel exhaust in the workplace. In NIOSH Manual of Analytical Methods (NMAM), 1–41. Washington: National Institute for Occupational Safety and Health.
  • Birch, M. E., and R. A. Cary. 1996. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25 (3):221–41. doi:10.1080/02786829608965393.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol 40 (1):27–67. doi:10.1080/02786820500421521.
  • Brady, J. M., M. D. Stokes, J. Bonnardel, and T. H. Bertram. 2016. Characterization of a quadrotor unmanned aircraft system for aerosol-particle-concentration measurements. Environ. Sci. Technol. 50 (3):1376–1383. doi:10.1021/acs.est.5b05320.
  • Cao, R., B. Li, H. W. Wang, S. Tao, Z. R. Peng, and H. D. He. 2020. Vertical and horizontal profiles of particulate matter and black carbon near elevated highways based on unmanned aerial vehicle monitoring. Sustain 12 (3):1204. doi:10.3390/su12031204.
  • Chen, W. N., F. J. Tsai, C. C. K. Chou, S. Y. Chang, Y. W. Chen, and J. P. Chen. 2007. Optical properties of Asian dusts in the free atmosphere measured by Raman lidar at Taipei, Taiwan. Atmos. Environ. 41 (36):7698–7614. doi:10.1016/j.atmosenv.2007.06.001.
  • Cheng, W. H., T. S. Hsieh, C. M. Chu, C. C. Chiang, and C. S. Yuan. 2019. Application of a telescoping microextraction needle trap sampling device on a drone to extract airborne organic vapors. Aerosol Air Qual. Res. 19 (7):1593–1601. doi:10.4209/aaqr.2019.04.0183.
  • Chiliński, M. T., K. M. Markowicz, and M. Kubicki. 2018. UAS as a support for atmospheric aerosols research: Case study. Pure Appl. Geophys. 175 (9):3325–3342. doi:10.1007/s00024-018-1767-3.
  • Chow, J. C., J. G. Watson, D. Crow, D. H. Lowenthal, and T. Merrifield. 2001. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci. Technol. 34 (1):23–34. doi:10.1080/02786820119073.
  • Creamean, J. M., G. De Boer, H. Telg, F. Mei, D. Dexheimer, M. D. Shupe, A. Solomon, and A. McComiskey. 2021. Assessing the vertical structure of Arctic aerosols using balloon-borne measurements. Atmos. Chem. Phys. 21 (3):1737–1757. doi:10.5194/acp-21-1737-2021.
  • Davidson, C. I., R. F. Phalen, and P. A. Solomon. 2005. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 39 (8):737–749. doi:10.1080/02786820500191348.
  • Dubey, R., A. K. Patra, and Nazneen, (2022). Vertical profile of particulate matter: A review of techniques and methods. Air Qual. Atmos Health. 15:979–1010. doi:10.1007/s11869-022-01192-1.
  • Gan, C. M., Y. Wu, B. L. Madhavan, B. Gross, and F. Moshary. 2011. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5 forecasts. Atmos. Environ. 45 (37):6613–6621. doi:10.1016/j.atmosenv.2011.09.013.
  • Gantt, B., and N. Meskhidze. 2013. The physical and chemical characteristics of marine primary organic aerosol: A review. Atmos. Chem. Phys. 13 (8):3979–3996. doi:10.5194/acp-13-3979-2013.
  • Gentner, D. R., S. H. Jathar, T. D. Gordon, R. Bahreini, D. A. Day, I. El Haddad, P. L. Hayes, S. M. Pieber, S. M. Platt, J. De Gouw, et al. 2017. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol. 51 (3):1074–1093. doi:10.1021/acs.est.6b04509.
  • Hara, K., K. Osada, and T. Yamanouchi. 2013. Tethered balloon-borne aerosol measurements: Seasonal and vertical variations of aerosol constituents over Syowa Station, Antarctica. Atmos. Chem. Phys. 13 (17):9119–9139. doi:10.5194/acp-13-9119-2013.
  • Hedworth, H. A., T. Sayahi, K. E. Kelly, and T. Saad. 2021. The effectiveness of drones in measuring particulate matter. J. Aerosol Sci 152 (July 2020):105702. doi:10.1016/j.jaerosci.2020.105702.
  • Hu, X. M., D. C. Doughty, K. J. Sanchez, E. Joseph, and J. D. Fuentes. 2012. Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model. Atmos. Environ 46:354–364. doi:10.1016/j.atmosenv.2011.09.054.
  • Huang, X. H. H., Q. J. Bian, P. K. K. Louie, and J. Z. Yu. 2014. Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong. Atmos. Chem. Phys. 14 (17):9279–9293. doi:10.5194/acp-14-9279-2014.
  • Jansen, K. L., T. V. Larson, J. Q. Koenig, T. F. Mar, C. Fields, J. Stewart, and M. Lippmann. 2005. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ. Health Perspect. 113 (12):1741–1746. doi:10.1289/ehp.8153.
  • Jeong, C. H., P. K. Hopke, E. Kim, and D. W. Lee. 2004. The comparison between thermal-optical transmittance elemental carbon and Aethalometer black carbon measured at multiple monitoring sites. Atmos. Environ 38 (31):5193–5204. doi:10.1016/j.atmosenv.2004.02.065.
  • Kim, K. H., E. Kabir, and S. Kabir. 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74:136–143. doi:10.1016/j.envint.2014.10.005.
  • Lambey, V., and A. D. Prasad. 2021. A review on air quality measurement using an unmanned aerial vehicle. Water. Air. Soil Pollut. 232 (3):1–32. doi:10.1007/s11270-020-04973-5.
  • Li, L., J. Y. An, Y. Y. Shi, M. Zhou, R. S. Yan, C. Huang, H. L. Wang, S. R. Lou, Q. Wang, Q. Lu, et al. 2016. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013. Atmos. Environ. 144:194–207. doi:10.1016/j.atmosenv.2016.08.076.
  • Li, X. B., Z. R. Peng, Q. C. Lu, D. Wang, X. M. Hu, D. Wang, B. Li, Q. Fu, G. Xiu, and H. He. 2020. Evaluation of unmanned aerial system in measuring lower tropospheric ozone and fine aerosol particles using portable monitors. Atmos. Environ 222 (November 2019):117134. doi:10.1016/j.atmosenv.2019.117134.
  • Liu, X., M. Zheng, Y. Liu, Y. Jin, J. Liu, B. Zhang, X. Yang, Y. Wu, T. Zhang, Y. Xiang, et al. 2022. Intercomparison of equivalent black carbon (eBC) and elemental carbon (EC) concentrations with three-year continuous measurement in Beijing, China. Environ. Res. 209 (December 2021):112791. doi:10.1016/j.envres.2022.112791.
  • Lv, M., D. Liu, Z. Li, J. Mao, Y. Sun, Z. Wang, Y. Wang, and C. Xie. 2017. Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign. J. Quant. Spectrosc. Radiat. Transf 188:60–70. doi:10.1016/j.jqsrt.2015.12.029.
  • Mishra, M., S. Gulia, N. Shukla, S. K. Goyal, and U. C. Kulshrestha. 2023. Review of secondary aerosol formation and its contribution in air pollution load of Delhi NCR. Water. Air. Soil Pollut. 234 (1):47. doi:10.1007/s11270-022-06047-0.
  • Panteliadis, P., T. Hafkenscheid, B. Cary, E. Diapouli, A. Fischer, O. Favez, P. Quincey, M. Viana, R. Hitzenberger, R. Vecchi, et al. 2015. ECOC comparison exercise with identical thermal protocols after temperature offset correction - instrument diagnostics by in-depth evaluation of operational parameters. Atmos. Meas. Tech. 8 (2):779–792. doi:10.5194/amt-8-779-2015.
  • Paris, J. D., M. Y. Arshinov, P. Ciais, B. D. Belan, and P. Nédélec. 2009. Large-scale aircraft observations of ultra-fine and fine particle concentrations in the remote Siberian troposphere: New particle formation studies. Atmos. Environ 43 (6):1302–1309. doi:10.1016/j.atmosenv.2008.11.032.
  • Ramanathan, V., and G. Carmichael. 2008. Global and regional climate changes due to black carbon. Nature Geosci. 1 (4):221–227. doi:10.1038/ngeo156.
  • Samad, A., U. Vogt, A. Panta, and D. Uprety. 2020. Vertical distribution of particulate matter, black carbon and ultra-fine particles in Stuttgart, Germany. Atmos. Pollut. Res 11 (8):1441–1450. doi:10.1016/j.apr.2020.05.017.
  • Sorensen, C. M., R. C. Flagan, U. Baltensperger, and D. Y. H. Pui. 2019. Grand challenges for aerosol science and technology. Aerosol Sci. Technol 53 (7):731–734. doi:10.1080/02786826.2019.1611333.
  • Turpin, B. J., P. Saxena, and E. Andrews. 2000. Measuring and simulating particulate organics in the atmosphere: Problems and prospects. Atmos. Environ 34 (18):2983–3013. doi:10.1016/S1352-2310(99)00501-4.
  • Venkatachari, P., L. Zhou, P. Hopke, J. Schwab, K. Demerjian, S. Weimer, O. Hogrefe, D. Felton, and O. Rattigan. 2006. An intercomparison of measurement methods for carbonaceous aerosol in the ambient air in New York City. Aerosol Sci. Technol 40 (10):788–795. doi:10.1080/02786820500380289.
  • Wang, D., J. Huo, Y. Duan, K. Zhang, A. Ding, Q. Fu, J. Luo, D. Fei, G. Xiu, and K. Huang. 2021. Vertical distribution and transport of air pollutants during a regional haze event in eastern China: A tethered mega-balloon observation study. Atmos. Environ 246 (June 2020):118039. doi:10.1016/j.atmosenv.2020.118039.
  • Wang, G., K. Kawamura, S. Hatakeyama, A. Takami, H. Li, and W. Wang. 2007. Aircraft measurement of organic aerosols over China. Environ. Sci. Technol. 41 (9):3115–3120. doi:10.1021/es062601h.
  • Watson, J. G., Chow, J. C. Chen, and L.-W. A. 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5 (1):65–102. doi:10.4209/aaqr.2005.06.0006.
  • Wu, C., Hilda Huang, X. H. Man Ng, W. Griffith, S. M, and Zhen Yu, J. 2016. Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: Implications for inter-protocol data conversion. Atmos. Meas. Tech. 9 (9):4547–4560. doi:10.5194/amt-9-4547-2016.
  • Yang, S., W. Yuesi, and Z. Changchun. 2009. Measurement of the vertical profile of atmospheric SO2 during the heating period in Beijing on days of high air pollution. Atmos. Environ. 43 (2):468–472. doi:10.1016/j.atmosenv.2008.09.057.
  • Zhu, Y., Z. Wu, Y. Park, X. Fan, D. Bai, P. Zong, B. Qin, X. Cai, and K. H. Ahn. 2019. Measurements of atmospheric aerosol vertical distribution above North China Plain using hexacopter. Sci. Total Environ. 665:1095–1002. doi:10.1016/j.scitotenv.2019.02.100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.