134
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Pulsed laser heating of diesel engine and turbojet combustor soot: Changes in nanostructure and implications

ORCID Icon, , , , &
Pages 1044-1056 | Received 09 Apr 2023, Accepted 27 Jul 2023, Published online: 22 Aug 2023

References

  • 8th International Workshop on Laser-Induced Incandescence. 2018. June, 10-13 Tutzing, Germany, (Organizers: Klaus Peter Geigle, Stefan Will, and Franz Huber). https://liiscience.org/2018_00/
  • Abrahamson, J. P., A. Jain, A. C. Van Duin, and R. L. Vander Wal. 2018. Trajectories of graphitizable anthracene coke and non-graphitizable sucrose char during the earliest stages of annealing by rapid CO2 laser heating. C J. Carbon Rese. 4 (2):36. doi:10.3390/c4020036.
  • Bambha, R. P., and H. A. Michelsen. 2015. Effects of aggregate morphology and size on laser-induced incandescence and scattering from black carbon (mature soot). J. Aerosol Sci. 88:159–81. doi:10.1016/j.jaerosci.2015.06.006.
  • Beck, H. A., R. Niessner, and C. Haisch. 2003. Development and characterization of a mobile photoacoustic sensor for online soot emission monitoring in diesel exhaust gas. Anal. Bioanal. Chem. 375 (8):1136–43. doi:10.1007/s00216-003-1810-8.
  • Cadrazco, M., A. Santamaría, and J. R. Agudelo. 2019. Chemical and nanostructural characteristics of the particulate matter produced by renewable diesel fuel in an automotive diesel engine. Combust. Flame 203:130–42. doi:10.1016/j.combustflame.2019.02.010.
  • Choi, M. Y., and K. A. Jensen. 1998. Calibration and correction of laser-induced incandescence for soot volume fraction measurements. Combust. Flame 112 (4):485–91.
  • Frenklach, M. 2002. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4 (11):2028–37. doi:10.1039/b110045a.
  • Frenklach, M., C. A. Schuetz, and J. Ping. 2005. Migration mechanism of aromatic-edge growth. Proc. Combust. Inst. 30 (1):1389–96. doi:10.1016/j.proci.2004.07.048.
  • Gaddam, C. K. 2015. Electron microscopic and spectroscopic characterization for soot source differentiation by laser derivatization. University Park, PA: The Pennsylvania State University.
  • Gaddam, C. K., R. L. Vander Wal, X. Chen, A. Yezerets, and K. Kamasamudram. 2016. Reconciliation of carbon oxidation rates and activation energies based on changing nanostructure. Carbon 98:545–56. doi:10.1016/j.carbon.2015.11.035.
  • Michelsen, H. A., C. Schulz, G. J. Smallwood, and S. Will. 2015. Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Prog. Energy Combust. Sci. 51:2–48. doi:10.1016/j.pecs.2015.07.001.
  • Howard, R. n.d. AEDC, Arnold Air Force Base, personal communication.
  • Kebabian, P. L., W. A. Robinson, and A. Freedman. 2007. Optical extinction monitor using cw cavity enhanced detection. Rev. Sci. Instrum. 78 (6):063102. doi:10.1063/1.2744223.
  • Kinsey, J. S., R. Giannelli, R. Howard, B. Hoffman, R. Frazee, M. Aldridge, C. Leggett, K. Stevens, D. Kittelson, W. Silvis, et al. 2021. Assessment of a regulatory measurement system for the determination of the non-volatile particulate matter emissions from commercial aircraft engines. J. Aerosol Sci. 154:1–16. doi:10.1016/j.jaerosci.2020.105734.
  • Kumal, R. R., J. Liu, A. Gharpure, R. L. V. Wal, J. S. Kinsey, B. Giannelli, J. Stevens, C. Leggett, R. Howard, M. Forde, et al. 2020. Impact of biofuel blends on black carbon emissions from a gas turbine engine. Energy Fuels 34 (4):4958–66. doi:10.1021/acs.energyfuels.0c00094.
  • Liu, F., K. J. Daun, D. R. Snelling, and G. J. Smallwood. 2006. Heat conduction from a spherical nanoparticle: Status of modeling heat conduction in laser-induced incandescence. Appl. Phys. B 83 (3):355–82. doi:10.1007/s00340-006-2194-1.
  • Liu, Y. T., T. T. Yao, W. S. Zhang, and G. P. Wu. 2019. Laser welding of carbon nanotube networks on carbon fibers from ultrasonic-directed assembly. Mater. Lett. 236:244–7. doi:10.1016/j.matlet.2018.09.161.
  • Massoli, P., P. L. Kebabian, T. B. Onasch, F. B. Hills, and A. Freedman. 2010. Aerosol light extinction measurements by cavity attenuated phase shift (CAPS) spectroscopy: Laboratory validation and field deployment of a compact aerosol particle extinction monitor. Aerosol Sci. Technol. 44 (6):428–35. doi:10.1080/02786821003716599.
  • Michelsen, H. A., F. Liu, B. F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, et al. 2007. Modeling laser-induced incandescence of soot: A summary and comparison of LII models. Appl. Phys. B 87 (3):503–21. doi:10.1007/s00340-007-2619-5.
  • Morajkar, P. P., M. K. Abdrabou, A. V. Salkar, A. Raj, M. Elkadi, and D. H. Anjum. 2020. Nanostructural disorder and reactivity comparison of flame soot and engine soot using diesel and Jatropha biodiesel/diesel blend as fuels. Energy Fuels 34 (10):12960–71. doi:10.1021/acs.energyfuels.0c02063.
  • Salatino, P., O. Senneca, and S. Masi. 1998. Gasification of a coal char by oxygen and carbon dioxide. Carbon 36 (4):443–52. doi:10.1016/S0008-6223(97)00228-5.
  • Schulz, C., B. F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, and G. Smallwood. 2006. Laser-induced incandescence: Recent trends and current questions. Appl. Phys. B 83 (3):333–54. doi:10.1007/s00340-006-2260-8.
  • Singh, M. 2019. Measurement, characterization, identification, and control of combustion produced soot. University Park, PA: The Pennsylvania State University.
  • Singh, M., and R. L. Vander Wal. 2020. The role of fuel chemistry in dictating nanostructure evolution of soot toward source identification. Aerosol Sci. Technol. 54 (1):66–78. doi:10.1080/02786826.2019.1675864.
  • Singh, M., C. K. Gaddam, J. P. Abrahamson, and R. L. Vander Wal. 2019. Soot differentiation by laser derivatization. Aerosol Sci. Technol. 53 (2):207–29. doi:10.1080/02786826.2018.1554243.
  • Singh, M., J. P. Abrahamson, and R. L. Vander Wal. 2018. Informing TiRe-LII assumptions for soot nanostructure and optical properties for estimation of soot primary particle diameter. Appl. Phys. B 124 (7):130. doi:10.1007/s00340-018-6994-x.
  • Strzelec, A., R. L. Vander Wal, S. A. Lewis, T. J. Toops, and C. S. Daw. 2017. Nanostructure and burning mode of light-duty diesel particulate with conventional diesel, biodiesel, and intermediate blends. Int. J. Engine Res. 18 (5-6):520–31. doi:10.1177/1468087416674414.
  • Sun, C., J. Martin, and A. L. Boehman. 2020. Impacts of advanced diesel combustion operation and fuel formulation on soot nanostructure and reactivity. Fuel 276:118080. doi:10.1016/j.fuel.2020.118080.
  • Vander Wal, R. L., A. Strzelec, T. J. Toops, C. S. Daw, and C. L. Genzale. 2013. Forensics of soot: C5-related nanostructure as a diagnostic of in-cylinder chemistry. Fuel 113:522–6. doi:10.1016/j.fuel.2013.05.104.
  • Vander Wal, R. L., and T. M. Ticich. 1999. Cavity ringdown and laser-induced incandescence measurements of soot. Appl. Opt. 38 (9):1444–51. doi:10.1364/ao.38.001444.
  • Vander Wal, R. L., T. M. Ticich, and A. B. Stephens. 1998. Optical and microscopy investigations of soot structure alterations by laser-induced incandescence. Appl. Phys. B 67 (1):115–23. doi:10.1007/s003400050483.
  • Vander Wal, R. L., T. M. Ticich, and A. B. Stephens. 1999. Can soot primary particle size be determined using laser-induced incandescence? Combust. Flame 116 (1-2):291–6. doi:10.1016/S0010-2180(98)00040-6.
  • Verma, P., M. Jafari, S. A. Rahman, E. Pickering, S. Stevanovic, A. Dowell, R. Brown, and Z. Ristovski. 2020. The impact of chemical composition of oxygenated fuels on morphology and nanostructure of soot particles. Fuel 259:116167. doi:10.1016/j.fuel.2019.116167.
  • Bachalo, W. D., S. V. Sankar, G. J. Smallwood, and D. R. Snelling. 2002. Development of the laser-induced incandescence method for the reliable characterization of particulate emissions. 11th international symposium on applications of laser techniques to fluid mechanics, July, 8-11, Lisbon, Portugal.
  • Vander Wal, R. L., and M. Y. Choi. 1999. Pulsed laser heating of soot: Morphological changes. Carbon 37 (2):231–9. doi:10.1016/S0008-6223(98)00169-9.
  • Yehliu, K., G. K. Lilik, R. L. Vander Wal, C. Sun, and A. L. Boehman. 2017. Impacts of advanced diesel combustion operation on soot nanostructure and reactivity. Int. J. Engine Res. 18 (5–6):532–42. doi:10.1177/1468087416659947.
  • Yu, Z., L. D. Ziemba, T. B. Onasch, S. C. Herndon, S. E. Albo, R. Miake-Lye, B. E. Anderson, P. L. Kebabian, and A. Freedman. 2011. Direct measurement of aircraft engine soot emissions using a cavity-attenuated phase shift (CAPS)-based extinction monitor. Aerosol Sci. Technol. 45 (11):1319–25. doi:10.1080/02786826.2011.592873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.