233
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Characteristics of Scanning Flow Condensation Particle Counter (SFCPC): A rapid approach for retrieving hygroscopicity and chemical composition of sub-10 nm aerosol particles

, , , , , & ORCID Icon show all
Pages 1031-1043 | Received 24 Mar 2023, Accepted 27 Jul 2023, Published online: 22 Aug 2023

References

  • Bae, M. S., J. J. Schwab, O. Hogrefe, B. P. Frank, G. G. Lala, and K. L. Demerjian. 2010. Characteristics of size distributions at urban and rural locations in New York. Atmos. Chem. Phys. 10 (10):4521–35. doi: 10.5194/acp-10-4521-2010.
  • Biskos, G., D. Paulsen, L. M. Russell, P. R. Buseck, and S. T. Martin. 2006. Prompt deliquescence and efflorescence of aerosol nanoparticles. Atmos. Chem. Phys. 6 (12):4633–42. doi: 10.5194/acp-6-4633-2006.
  • Chan, M. N., S. M. Kreidenweis, and C. K. Chan. 2008. Measurements of the hygroscopic and deliquescence properties of organic compounds of different solubilities in water and their relationship with cloud condensation nuclei activities. Environ. Sci. Technol. 42 (10):3602–8. doi: 10.1021/es7023252.
  • Cheng, Y., J. R. Brook, S. M. Li, and A. Leithead. 2011. Seasonal variation in the biogenic secondary organic aerosol tracer cis-pinonic acid: Enhancement due to emissions from regional and local biomass burning. Atmos. Environ. 45 (39):7105–12. doi: 10.1016/j.atmosenv.2011.09.036.
  • Cheng, Y., H. Su, T. Koop, E. Mikhailov, and U. Poschl. 2015. Size dependence of phase transitions in aerosol nanoparticles. Nat. Commun. 6:5923. doi: 10.1038/ncomms6923.
  • Dawson, J. N., K. A. Malek, P. N. Razafindrambinina, T. M. Raymond, D. D. Dutcher, A. A. Asa-Awuku, and M. A. Freedman. 2020. Direct comparison of the submicron aerosol hygroscopicity of water-soluble sugars. ACS Earth Space Chem. 4 (12):2215–26. doi: 10.1021/acsearthspacechem.0c00159.
  • Deng, C., Y. Fu, L. Dada, C. Yan, R. Cai, D. Yang, Y. Zhou, R. Yin, Y. Lu, X. Li, et al. 2020. Seasonal characteristics of new particle formation and growth in urban Beijing. Environ. Sci. Technol. 54 (14):8547–57. doi: 10.1021/acs.est.0c00808.
  • Dusek, U., G. P. Frank, J. Curtius, F. Drewnick, J. Schneider, A. Kurten, D. Rose, M. O. Andreae, S. Borrmann, and U. Poschl. 2010. Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events. Geophys. Res. Lett. 37 (3):n/a–/a. doi: 10.1029/2009GL040930.
  • Fang, X., M. Hu, D. J. Shang, R. Z. Tang, L. L. Shi, T. Olenius, Y. J. Wang, H. Wang, Z. J. Zhang, S. Y. Chen, et al. 2020. Observational evidence for the involvement of dicarboxylic acids in particle nucleation. Environ. Sci. Technol. Lett. 7 (6):388–94. doi: 10.1021/acs.estlett.0c00270.
  • Frank, B. P., S. Saltiel, O. Hogrefe, J. Grygas, and G. G. Lala. 2008. Determination of mean particle size using the electrical aerosol detector and the condensation particle counter: Comparison with the scanning mobility particle sizer. J. Aerosol Sci. 39 (1):19–29. doi: 10.1016/j.jaerosci.2007.09.008.
  • Gordon, H., J. Kirkby, U. Baltensperger, F. Bianchi, M. Breitenlechner, J. Curtius, A. Dias, J. Dommen, N. M. Donahue, E. M. Dunne, et al. 2017. Causes and importance of new particle formation in the present-day and preindustrial atmospheres. J. Geophys. Res. Atmos. 122 (16):8739–60. doi: 10.1002/2017JD026844.
  • Guo, S., M. Hu, J. Peng, Z. Wu, M. L. Zamora, D. Shang, Z. Du, J. Zheng, X. Fang, R. Tang, et al. 2020. Remarkable nucleation and growth of ultrafine particles from vehicular exhaust. Proc. Natl. Acad. Sci. U S A 117 (7):3427–32. doi: 10.1073/pnas.1916366117.
  • Hansen, A. M. K., J. Hong, T. Raatikainen, K. Kristensen, A. Ylisirnio, A. Virtanen, T. Petaja, M. Glasius, and N. L. Prisle. 2015. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate. Atmos. Chem. Phys. 15 (24):14071–89. doi: 10.5194/acp-15-14071-2015.
  • Hering, S. V., and M. R. Stolzenburg. 2005. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Sci. Technol. 39 (5):428–36. doi: 10.1080/027868290953416.
  • Hering, S. V., M. R. Stolzenburg, F. R. Quant, D. R. Oberreit, and P. B. Keady. 2005. A laminar-flow, water-based condensation particle counter (WCPC). Aerosol Sci. Technol. 39 (7):659–72. doi: 10.1080/02786820500182123.
  • Huff Hartz, K. E., J. E. Tischuk, M. N. Chan, C. K. Chan, N. M. Donahue, and S. N. Pandis. 2006. Cloud condensation nuclei activation of limited solubility organic aerosol. Atmos. Environ. 40 (4):605–17. doi: 10.1016/j.atmosenv.2005.09.076.
  • Iida, K., M. R. Stolzenburg, and P. H. McMurry. 2009. Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci. Technol. 43 (1):81–96. doi: 10.1080/02786820802488194.
  • Jing, B., S. R. Tong, Q. F. Liu, K. Li, W. G. Wang, Y. H. Zhang, and M. F. Ge. 2016. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate. Atmos. Chem. Phys. 16 (6):4101–18. doi: 10.5194/acp-16-4101-2016.
  • Kangasluoma, J., and M. Attoui. 2019. Review of sub-3 nm condensation particle counters, calibrations, and cluster generation methods. Aerosol Sci. Technol. 53 (11):1277–310. doi: 10.1080/02786826.2019.1654084.
  • Kangasluoma, J., M. Attoui, H. Junninen, K. Lehtipalo, A. Samodurov, F. Korhonen, N. Sarnela, A. Schmidt-Ott, D. Worsnop, M. Kulmala, et al. 2015. Sizing of neutral sub 3nm tungsten oxide clusters using airmodus particle size magnifier. J. Aerosol Sci. 87:53–62. doi: 10.1016/j.jaerosci.2015.05.007.
  • Kangasluoma, J., C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petaja. 2014. Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmos. Meas. Tech. 7 (3):689–700. doi: 10.5194/amt-7-689-2014.
  • Kangasluoma, J., A. Samodurov, M. Attoui, A. Franchin, H. Junninen, F. Korhonen, T. Kurten, H. Vehkamaki, M. Sipila, K. Lehtipalo, et al. 2016. Heterogeneous nucleation onto ions and neutralized ions: Insights into sign-preference. J. Phys. Chem. C 120 (13):7444–50. doi: 10.1021/acs.jpcc.6b01779.
  • Kavouras, I. G., N. Mihalopoulos, and E. G. Stephanou. 1998. Formation of atmospheric particles from organic acids produced by forests. Nature 395 (6703):683–6. doi: 10.1038/27179.
  • Kerminen, V. M., X. M. Chen, V. Vakkari, T. Petaja, M. Kulmala, and F. Bianchi. 2018. Atmospheric new particle formation and growth: Review of field observations. Environ. Res. Lett. 13 (10):103003. doi: 10.1088/1748-9326/aadf3c.
  • Keskinen, H., A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy, S. Schobesberger, M. Gysel, F. Riccobono, J. G. Slowik, F. Bianchi, et al. 2013. Evolution of particle composition in cloud nucleation experiments. Atmos. Chem. Phys. 13 (11):5587–600. doi: 10.5194/acp-13-5587-2013.
  • Koehler, K. A., S. M. Kreidenweis, P. J. DeMott, A. J. Prenni, C. M. Carrico, B. Ervens, and G. Feingold. 2006. Water activity and activation diameters from hygroscopicity data - part ii: Application to organic species. Atmos. Chem. Phys. 6 (3):795–809. doi: 10.5194/acp-6-795-2006.
  • Kontkanen, J., C. J. Deng, Y. Y. Fu, L. Dada, Y. Zhou, J. Cai, K. R. Daellenbach, S. Hakala, T. V. Kokkonen, Z. H. Lin, et al. 2020. Size-resolved particle number emissions in Beijing determined from measured particle size distributions. Atmos. Chem. Phys. 20 (19):11329–48. doi: 10.5194/acp-20-11329-2020.
  • Kulmala, M., G. Mordas, T. Petaja, T. Gronholm, P. P. Aalto, H. Vehkamaki, A. I. Hienola, E. Herrmann, M. Sipila, I. Riipinen, et al. 2007. The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles. J. Aerosol Sci. 38 (3):289–304. doi: 10.1016/j.jaerosci.2006.11.008.
  • Kulmala, M., T. Petaja, M. Ehn, J. Thornton, M. Sipila, D. R. Worsnop, and V. M. Kerminen. 2014. Chemistry of atmospheric nucleation: On the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Ann. Rev. Phys. Chem. 65:21–37. doi: 10.1146/annurev-physchem-040412-110014.
  • Kuwata, M., W. Shao, R. Lebouteiller, and S. T. Martin. 2013. Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of cloud condensation nuclei (ccn). Atmos. Chem. Phys. 13 (10):5309–24. doi: 10.5194/acp-13-5309-2013.
  • Lee, S. H., H. Gordon, H. Yu, K. Lehtipalo, R. Haley, Y. X. Li, and R. Y. Zhang. 2019. New particle formation in the atmosphere: From molecular clusters to global climate. J. Geophys. Res. Atmos. 124 (13):7098–146. doi: 10.1029/2018JD029356.
  • Lei, Z., J. Zhang, E. A. Mueller, Y. Xiao, K. R. Kolozsvari, A. J. McNeil, M. M. Banaszak Holl, and A. P. Ault. 2022. Glass transition temperatures of individual submicrometer atmospheric particles: Direct measurement via heated atomic force microscopy probe. Anal. Chem. 94 (35):11973–7. doi: 10.1021/acs.analchem.2c01979.
  • Li, X., Y. Li, M. J. Lawler, J. Hao, J. N. Smith, and J. Jiang. 2021. Composition of ultrafine particles in urban Beijing: Measurement using a thermal desorption chemical ionization mass spectrometer. Environ. Sci. Technol. 55 (5):2859–68. doi: 10.1021/acs.est.0c06053.
  • Mei, F., S. Spielman, S. Hering, J. Wang, M. S. Pekour, G. Lewis, B. Schmid, J. Tomlinson, and M. Havlicek. 2021. Simulation-aided characterization of a versatile water-based condensation particle counter for atmospheric airborne research. Atmos. Meas. Tech. 14 (11):7329–40. doi: 10.5194/amt-14-7329-2021.
  • Merikanto, J., D. V. Spracklen, G. W. Mann, S. J. Pickering, and K. S. Carslaw. 2009. Impact of nucleation on global CCN. Atmos. Chem. Phys. 9 (21):8601–16. doi: 10.5194/acp-9-8601-2009.
  • Merikanto, J., D. V. Spracklen, K. J. Pringle, and K. S. Carslaw. 2010. Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000. Atmos. Chem. Phys. 10 (2):695–705. doi: 10.5194/acp-10-695-2010.
  • Moore, R. H., K. Cerully, R. Bahreini, C. A. Brock, A. M. Middlebrook, and A. Nenes. 2012. Hygroscopicity and composition of California CCN during summer 2010. J. Geophys. Res. 117 (D21):n/a–/a. doi: 10.1029/2011JD017352.
  • Moore, R. H., and A. Nenes. 2009. Scanning flow CCN analysis—a method for fast measurements of CCN spectra. Aerosol Sci. Technol. 43 (12):1192–207. doi: 10.1080/02786820903289780.
  • O'Dowd, C. D., P. Aalto, K. Hmeri, M. Kulmala, and T. Hoffmann. 2002. Aerosol formation: Atmospheric particles from organic vapours. Nature 416 (6880):497–8. doi: 10.1038/416497a.
  • Peineke, C., M. B. Attoui, and A. Schmidt-Ott. 2006. Using a glowing wire generator for production of charged, uniformly sized nanoparticles at high concentrations. J. Aerosol Sci. 37 (12):1651–61. doi: 10.1016/j.jaerosci.2006.06.006.
  • Peng, C., C. Deng, T. Lei, J. Zheng, J. Zhao, D. Wang, Z. Wu, L. Wang, Y. Chen, M. Liu, et al. 2023. Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles. J. Environ. Sci. (China) 123:183–202. doi: 10.1016/j.jes.2022.03.006.
  • Perraud, V., X. X. Li, J. K. Jiang, B. J. Finlayson-Pitts, and J. N. Smith. 2020. Size-resolved chemical composition of sub-20 nm particles from methanesulfonic acid reactions with methylamine and ammonia. ACS Earth Space Chem. 4 (7):1182–94. doi: 10.1021/acsearthspacechem.0c00120.
  • Petters, M. D., and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi: 10.5194/acp-7-1961-2007.
  • Raymond, T. M., and S. N. Pandis. 2002. Cloud activation of single-component organic aerosol particles. J. Geophys. Res. 107 (D24):4787–94. doi: 10.1029/2002JD002159.
  • Raymond, T. M., and S. N. Pandis. 2003. Formation of cloud droplets by multicomponent organic particles. J. Geophys. Res. 108 (D15):4469–76. doi: 10.1029/2003JD003503.
  • Reid, J. P., A. K. Bertram, D. O. Topping, A. Laskin, S. T. Martin, M. D. Petters, F. D. Pope, and G. Rovelli. 2018. The viscosity of atmospherically relevant organic particles. Nat. Commun. 9 (1):956. doi: 10.1038/s41467-018-03027-z.
  • Ren, J. Y., L. Chen, T. Y. Fan, J. Y. Liu, S. H. Jiang, and F. Zhang. 2021. The NPF effect on CCN number concentrations: A review and re-evaluation of observations from 35 sites worldwide. Geophys. Res. Lett. 48 (19):1–12. doi: 10.1029/2021GL095190.
  • Roberts, G. C., and A. Nenes. 2005. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol. 39 (3):206–21. doi: 10.1080/027868290913988.
  • Ronkko, T., H. Kuuluvainen, P. Karjalainen, J. Keskinen, R. Hillamo, J. V. Niemi, L. Pirjola, H. J. Timonen, S. Saarikoski, E. Saukko, et al. 2017. Traffic is a major source of atmospheric nanocluster aerosol. Proc. Natl. Acad. Sci. U S A 114 (29):7549–54. doi: 10.1073/pnas.1700830114.
  • Rose, D., S. S. Gunthe, E. Mikhailov, G. P. Frank, U. Dusek, M. O. Andreae, and U. Poschl. 2008. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 8 (5):1153–79. doi: 10.5194/acp-8-1153-2008.
  • Ryerson, T. B., A. E. Andrews, W. M. Angevine, T. S. Bates, C. A. Brock, B. Cairns, R. C. Cohen, O. R. Cooper, J. A. de Gouw, F. C. Fehsenfeld, et al. 2013. The 2010 california research at the nexus of air quality and climate change (calnex) field study. J. Geophys. Res. Atmos. 118 (11):5830–66. doi: 10.1002/jgrd.50331.
  • Shi, Y. J., M. F. Ge, and W. G. Wang. 2012. Hygroscopicity of internally mixed aerosol particles containing benzoic acid and inorganic salts. Atmos. Environ. 60:9–17. doi: 10.1016/j.atmosenv.2012.06.034.
  • Slade, J. H., R. Thalman, J. Wang, and D. A. Knopf. 2015. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by oh: Implications for cloud condensation nucleus activity. Atmos. Chem. Phys. 15 (17):10183–201. doi: 10.5194/acp-15-10183-2015.
  • Smith, J. N., K. C. Barsanti, H. R. Friedli, M. Ehn, M. Kulmala, D. R. Collins, J. H. Scheckman, B. J. Williams, and P. H. McMurry. 2010. Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. Proc. Natl. Acad. Sci. U S A 107 (15):6634–9. doi: 10.1073/pnas.0912127107.
  • Smith, J. N., D. C. Draper, S. Chee, M. Dam, H. Glicker, D. Myers, A. E. Thomas, M. J. Lawler, and N. Myllys. 2021. Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition. J. Aerosol Sci. 153:105733. doi: 10.1016/j.jaerosci.2020.105733.
  • Smith, J. N., K. F. Moore, P. H. McMurry, and F. L. Eisele. 2004. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry. Aerosol Sci. Technol. 38 (2):100–10. doi: 10.1080/02786820490249036.
  • Sorjamaa, R., and A. Laaksonen. 2007. The effect of H2O adsorption on cloud drop activation of insoluble particles: A theoretical framework. Atmos. Chem. Phys. 7 (24):6175–80. doi: 10.5194/acp-7-6175-2007.
  • Steiner, G. 2006. Generierung von Nanopartikeln - Über die Konstruktion eines Heizdraht-Wolframoxidgenerators. Master thesis, Faculty of Physics, University of Vienna, Vienna, Austria.
  • Svenningsson, B., J. Rissler, E. Swietlicki, M. Mircea, M. Bilde, M. C. Facchini, S. Decesari, S. Fuzzi, J. Zhou, J. Monster, et al. 2006. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 6 (7):1937–52. doi: 10.5194/acp-6-1937-2006.
  • Vogel, A. L., J. Schneider, C. Muller-Tautges, G. J. Phillips, M. L. Pohlker, D. Rose, C. Zuth, U. Makkonen, H. Hakola, J. N. Crowley, et al. 2016. Aerosol chemistry resolved by mass spectrometry: Linking field measurements of cloud condensation nuclei activity to organic aerosol composition. Environ. Sci. Technol. 50 (20):10823–32. doi: 10.1021/acs.est.6b01675.
  • von Schneidemesser, E., P. S. Monks, J. D. Allan, L. Bruhwiler, P. Forster, D. Fowler, A. Lauer, W. T. Morgan, P. Paasonen, M. Righi, et al. 2015. Chemistry and the linkages between air quality and climate change. Chem. Rev. 115 (10):3856–97. doi: 10.1021/acs.chemrev.5b00089.
  • Wang, Z., Y. Cheng, N. Ma, E. Mikhailov, U. Pöschl, and H. Su. 2017. Dependence of the hygroscopicity parameter κ on particle size, humidity and solute concentration: Implications for laboratory experiments, field measurements and model studies. Atmos. Chem. Phys. Discuss. 1–33. doi: 10.5194/acp-2017-253.
  • Wang, Z. B., M. Hu, J. Y. Sun, Z. J. Wu, D. L. Yue, X. J. Shen, Y. M. Zhang, X. Y. Pei, Y. F. Cheng, and A. Wiedensohler. 2013. Characteristics of regional new particle formation in urban and regional background environments in the north China plain. Atmos. Chem. Phys. 13 (24):12495–506. doi: 10.5194/acp-13-12495-2013.
  • Wang, Z., M. Hu, Z. Wu, and D. Yue. 2013. Reasearch on the formation mechanisms of new particles in the atmosphere. Acta Chim. Sin. 71 (4):519. doi: 10.6023/A12121062.
  • Wang, Z., H. Su, X. Wang, N. Ma, A. Wiedensohler, U. Poschl, and Y. Cheng. 2015. Scanning supersaturation condensation particle counter applied as a nano-CCN counter for size-resolved analysis of the hygroscopicity and chemical composition of nanoparticles. Atmos. Meas. Tech. 8 (5):2161–72. doi: 10.5194/amt-8-2161-2015.
  • Wang, Z., Z. Wu, D. Yue, D. Shang, S. Guo, J. Sun, A. Ding, L. Wang, J. Jiang, H. Guo, et al. 2017. New particle formation in China: Current knowledge and further directions. Sci. Total Environ. 577:258–66. doi: 10.1016/j.scitotenv.2016.10.177.
  • Wlasits, P. J., D. Stolzenburg, C. Tauber, S. Brilke, S. H. Schmitt, P. M. Winkler, and D. Wimmer. 2020. Counting on chemistry: Laboratory evaluation of seed-material-dependent detection efficiencies of ultrafine condensation particle counters. Atmos. Meas. Tech. 13 (7):3787–98. doi: 10.5194/amt-13-3787-2020.
  • Wu, Z. J., L. Poulain, S. Henning, K. Dieckmann, W. Birmili, M. Merkel, D. van Pinxteren, G. Spindler, K. Muller, F. Stratmann, et al. 2013. Relating particle hygroscopicity and CCN activity to chemical composition during the hcct-2010 field campaign. Atmos. Chem. Phys. 13 (16):7983–96. doi: 10.5194/acp-13-7983-2013.
  • Xiao, S., M. Y. Wang, L. Yao, M. Kulmala, B. Zhou, X. Yang, J. M. Chen, D. F. Wang, Q. Y. Fu, D. R. Worsnop, et al. 2015. Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmos. Chem. Phys. 15 (4):1769–81. doi: 10.5194/acp-15-1769-2015.
  • Zhang, R., A. Khalizov, L. Wang, M. Hu, and W. Xu. 2012. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 112 (3):1957–2011. doi: 10.1021/cr2001756.
  • Zhang, R., I. Suh, J. Zhao, D. Zhang, E. C. Fortner, X. Tie, L. T. Molina, and M. J. Molina. 2004. Atmospheric new particle formation enhanced by organic acids. Science 304 (5676):1487–90. doi: 10.1126/science.1095139.
  • Zhang, K., Z. Xu, J. Gao, Z. Xu, and Z. Wang. 2022. Review of online measurement techniques for chemical composition of atmospheric clusters and sub-20 nm particles. Front. Environ. Sci. 10:1–16. doi: 10.3389/fenvs.2022.937006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.