573
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A machine learning based approach to solve the aerosol dynamics coagulation model

, , &
Pages 1098-1116 | Received 23 Feb 2023, Accepted 06 Aug 2023, Published online: 14 Sep 2023

References

  • AAQRL. 2023. AAQRL/hybrid-ANN-coagulation-model: Version 1.0.0 (v1.0.0). Zenodo. doi: 10.5281/zenodo.8161998.
  • Bai, J., F. Lu, and K. Zhang. 2019. Onnx: Open neural network exchange. GitHub repository. https://github.com/onnx/onnx
  • Barrett, J., and N. Webb. 1998. A comparison of some approximate methods for solving the aerosol general dynamic equation. J. Aerosol Sci. 29 (1–2):31–9. doi: 10.1016/S0021-8502(97)00455-2.
  • Behler, J. 2014. Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys. Condens. Matter. 26 (18):183001. doi: 10.1088/0953-8984/26/18/183001.
  • Biswas, P., C. Y. Wu, M. R. Zachariah, and B. McMillin. 1997. Characterization of iron oxide-silica nanocomposites in flames: Part ii. Comparison of discrete-sectional model predictions to experimental data. J. Mater. Res. 12 (3):714–23. doi: 10.1557/JMR.1997.0106.
  • Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, et al. 2013. Clouds and aerosols. In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, 571–657. Cambridge: Cambridge University Press. doi: 10.1017/CBO9781107415324.016.
  • Bradley, W., J. Kim, Z. Kilwein, L. Blakely, M. Eydenberg, J. Jalvin, C. Laird, and F. Boukouvala. 2022. Perspectives on the integration between first-principles and data-driven modeling. Comput. Chem. Eng. 166:107898. doi: 10.1016/j.compchemeng.2022.107898.
  • Breiman, L. 2001. Random forests. Mach. Learn. 45 (1):5–32. doi: 10.1023/A:1010933404324.
  • Brezak, D., T. Bacek, D. Majetic, J. Kasac, and B. Novakovic. 2012. A comparison of feed-forward and recurrent neural networks in time series forecasting. Paper presented at the 2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr), 1–6. IEEE. doi: 10.1109/CIFEr.2012.6327793.
  • Chadha, T. S., M. Yang, K. Haddad, V. B. Shah, S. Li, and P. Biswas. 2017. Model based prediction of nanostructured thin film morphology in an aerosol chemical vapor deposition process. Chem. Eng. J. 310:102–13. doi: 10.1016/j.cej.2016.10.105.
  • Dhawan, S., and P. Biswas. 2021. Aerosol dynamics model for estimating the risk from short-range airborne transmission and inhalation of expiratory droplets of sars-cov-2. Environ. Sci. Technol. 55 (13):8987–99. doi: 10.1021/acs.est.1c00235.
  • Friedlander, S. K. 2000. Smoke, dust, and haze: Fundamentals of aerosol dynamics. New York: Oxford University Press.
  • Gelbard, F., Y. Tambour, and J. H. Seinfeld. 1980. Sectional representations for simulating aerosol dynamics. J. Colloid Interf. Sci. 76 (2):541–56. doi: 10.1016/0021-9797(80)90394-X.
  • Glorot, X., and Y. Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. Paper presented at the Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 249–256. JMLR Workshop and Conference Proceedings.
  • Hornik, K., M. Stinchcombe, and H. White. 1990. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3 (5):551–60. doi: 10.1016/0893-6080(90)90005-6.
  • Jeong, J. I., and M. Choi. 2003. A simple bimodal model for the evolution of non-spherical particles undergoing nucleation, coagulation and coalescence. J. Aerosol Sci. 34 (8):965–76. doi: 10.1016/S0021-8502(03)00067-3.
  • Kacica, C. T., and P. Biswas. 2020. Improved conductivity and ionic mobility in nanostructured thin films via aliovalent doping for ultra-high rate energy storage. Nanoscale Adv. 2 (5):2160–9. doi: 10.1039/D0NA00160K.
  • Kumar Akkisetty, P., U. Lee, G. V. Reklaitis, and V. Venkatasubramanian. 2010. Population balance model-based hybrid neural network for a pharmaceutical milling process. J. Pharm. Innov. 5 (4):161–8. doi: 10.1007/s12247-010-9090-2.
  • Kumar, S., and D. Ramkrishna. 1997. On the solution of population balance equations by discretization—iii. Nucleation, growth and aggregation of particles. Chem. Eng. Sci. 52 (24):4659–79. doi: 10.1016/S0009-2509(97)00307-2.
  • Landgrebe, J. D., and S. E. Pratsinis. 1990. A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime. J. Colloid Interf. Sci. 139 (1):63–86. doi: 10.1016/0021-9797(90)90445-T.
  • Lawrence, S., and C. L. Giles. 2000. Overfitting and neural networks: Conjugate gradient and backpropagation. Paper presented at the Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 114–119. IEEE. doi: 10.1109/IJCNN.2000.857823.
  • Li, Z., Y. Wang, Y. Lu, and P. Biswas. 2019. Investigation of aerosol and gas emissions from a coal-fired power plant under various operating conditions. J. Air Waste Manag. Assoc. 69 (1):34–46. doi: 10.1080/10962247.2018.1503981.
  • Liu, L., and A. Corma. 2018. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 118 (10):4981–5079. doi: 10.1021/acs.chemrev.7b00776.
  • Liu, Q., J. Guan, L. Qin, X. Zhang, and S. Mao. 2020. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today. 25 (1):150–9. doi: 10.1016/j.drudis.2019.09.023.
  • Meng, Y., S. Yu, J. Zhang, J. Qin, Z. Dong, G. Lu, and H. Pang. 2019. Hybrid modeling based on mechanistic and data-driven approaches for cane sugar crystallization. J. Food Eng. 257:44–55. doi: 10.1016/j.jfoodeng.2019.03.026.
  • Mishra, A., and V. Desai. 2006. Drought forecasting using feed-forward recursive neural network. Ecol. Modell. 198 (1–2):127–38. doi: 10.1016/j.ecolmodel.2006.04.017.
  • Modi, S., M. B. Foston, and P. Biswas. 2023. Controlled synthesis of smaller than 100 nm lignin nanoparticles in a furnace aerosol reactor. ACS Est. Eng. 3 (5):671–81. doi: 10.1021/acsestengg.2c00386.
  • Modi, S., O. Okonkwo, H. Zhou, S. Kavadiya, M. Foston, and P. Biswas. 2023. Geometric model for predicting the size and morphology evolution of multiparticle aggregates during simultaneous reaction and sintering. Chem. Eng. J. 458:141423. doi: 10.1016/j.cej.2023.141423.
  • Nielsen, R. F., N. Nazemzadeh, L. W. Sillesen, M. P. Andersson, K. V. Gernaey, and S. S. Mansouri. 2020. Hybrid machine learning assisted modelling framework for particle processes. Comput. Chem. Eng. 140:106916. doi: 10.1016/j.compchemeng.2020.106916.
  • Okonkwo, O., S. Dhawan, and P. Biswas. 2022. Controlled synthesis of alumina in a spray flame aerosol reactor. J. Am. Ceram. Soc. 105 (2):1481–90. doi: 10.1111/jace.18128.
  • Okonkwo, O., R. Patel, R. Gudi, and P. Biswas. 2023. ANN coagulation model training, validation and test dataset. Mendeley Data. V1. doi: 10.17632/pt4wjkhmyk.1.
  • Okonkwo, O., H. Zhang, K. Li, Q. Liu, and P. Biswas. 2022. Thermodynamic analysis of hydrocarbon reforming. J. CO2 Utilization. 60:101998. doi: 10.1016/j.jcou.2022.101998.
  • Palaniswaamy, G., and S. K. Loyalka. 2006. Direct simulation Monte Carlo aerosol dynamics: Coagulation and collisional sampling. Nucl. Technol. 156 (1):29–38. doi: 10.13182/NT06-A3771.
  • Patel, R. S., S. Bhartiya, and R. D. Gudi. 2022. Physics constrained learning in neural network based modeling. IFAC-PapersOnLine. 55 (7):79–85. doi: 10.1016/j.ifacol.2022.07.425.
  • Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12:2825–30.
  • Prakash, A., A. Bapat, and M. Zachariah. 2003. A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems. Aerosol Sci. Tech. 37 (11):892–8. doi: 10.1080/02786820300933.
  • Pratsinis, S. E. 1988. Simultaneous nucleation, condensation, and coagulation in aerosol reactors. J. Colloid Interf. Sci. 124 (2):416–27. doi: 10.1016/0021-9797(88)90180-4.
  • Riemer, N., M. West, R. A. Zaveri, and R. C. Easter. 2009. Simulating the evolution of soot mixing state with a particle-resolved aerosol model. J. Geophys. Res. 114 (D9):D09202. doi: 10.1029/2008JD011073.
  • Salminen, T., K. E. Lehtinen, J. P. Kaipio, V. Russell, and A. Seppänen. 2022. Application of finite element method to general dynamic equation of aerosols–comparison with classical numerical approximations. J. Aerosol Sci. 160:105902. doi: 10.1016/j.jaerosci.2021.105902.
  • Sangiorgio, M., and F. Dercole. 2020. Robustness of LSTM neural networks for multi-step forecasting of chaotic time series. Chaos, Solitons Fractals. 139:110045. doi: 10.1016/j.chaos.2020.110045.
  • Seinfeld, J., and S. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. New York: John Wiley & Sons.
  • Sonin, A. A. 2001. The physical basis of dimensional analysis. 2nd ed. Cambridge, MA. Department of Mechanical Engineering, Massachusetts Institute of Technology.
  • Stanier, C. O., A. Y. Khlystov, and S. N. Pandis. 2004. Ambient aerosol size distributions and number concentrations measured during the Pittsburgh air quality study (PAQS). Atmos. Environ. 38 (20):3275–84. doi: 10.1016/j.atmosenv.2004.03.020.
  • Venkatasubramanian, V. 2019. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE J. 65 (2):466–78. doi: 10.1002/aic.16489.
  • Wang, J. L., J. H. Curtis, N. Riemer, and M. West. 2022. Learning coagulation processes with combinatorial neural networks. J. Adv. Model. Earth Syst. 14 (12):e2022MS003252. doi: 10.1029/2022MS003252.
  • Wu, C.-Y., and P. Biswas. 1998. Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Sci. Technol. 29 (5):359–78. doi: 10.1080/02786829808965576.
  • Xu, Z., C. Sun, T. Ji, J. H. Manton, and W. Shieh. 2019. Computational complexity comparison of feedforward/radial basis function/recurrent neural network-based equalizer for a 50-gb/s pam4 direct-detection optical link. Opt. Express. 27 (25):36953–64. doi: 10.1364/OE.27.036953.
  • Yu, M., J. Lin, and T. Chan. 2008. A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Sci. Technol. 42 (9):705–13. doi: 10.1080/02786820802232972.
  • Zhang, H., G. Sharma, S. Dhawan, D. Dhanraj, Z. Li, and P. Biswas. 2020. Comparison of discrete, discrete-sectional, modal and moment models for aerosol dynamics simulations. Aerosol Sci. Technol. 54 (7):739–60. doi: 10.1080/02786826.2020.1723787.
  • Zhou, H., S. Modi, and P. Biswas. 2022. Controlled synthesis of charged lignin nanocarriers by electrospray. Colloids Surf, A. 648:129314. doi: 10.1016/j.colsurfa.2022.129314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.