267
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Exploring the potential for continuous measurement of ultrafine particle mass concentration (PM0.1) based on measurements of particle number concentration above 50 nm (N50)

ORCID Icon, &
Pages 1117-1127 | Received 29 Mar 2023, Accepted 07 Aug 2023, Published online: 29 Aug 2023

References

  • Adams, P. J., and J. H. Seinfeld. 2002. Predicting global aerosol size distributions in general circulation models. J. Geophys. Res. 107 (D19):4370. doi: 10.1029/2001JD001010.
  • Asmi, A., A. Wiedensohler, P. Laj, A. Fjaeraa, K. Sellegri, W. Birmili, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, et al. 2011. Number size distributions and seasonality of submicron particles in Europe 2008–2009. Atmos. Chem. Phys. 11 (11):5505–38. doi: 10.5194/acp-11-5505-2011.
  • Baldauf, R. W., R. B. Devlin, P. Gehr, R. Giannelli, B. Hassett-Sipple, H. Jung, G. Martini, J. McDonald, J. D. Sacks, and K. Walker. 2016. Ultrafine particle metrics and research considerations: Review of the 2015 UFP Workshop. Int. J. Environ. Res. Public Health 13:1054. doi: 10.3390/ijerph13111054.
  • Birmili, W., B. Alaviippola, D. Hinneburg, O. Knoth, T. Tuch, J. Borken-Kleefeld, and A. Schacht. 2009. Dispersion of traffic-related exhaust particles near the Berlin urban motorway – Estimation of fleet emission factors. Atmos. Chem. Phys. 9 (7):2355–74. doi: 10.5194/acp-9-2355-2009.
  • Carter, W. P. L. 2000. Programs and files implementing the SAPRC-99 mechanism and its associates emissions processing procedures for models-3 and other regional models.
  • Cassee, F., L. Morawska, A. Peters, A. Wierzbicka, G. Buonanno, J. Cyrys, J. SchnelleKreis, M. Kowalski, M. Riediker, W. Birmili, et al. 2019. White paper: Ambient ultrafine particles: Evidence for policy makers. https://efca.net/files/WHITE%20PAPER-UFP%20evidence%20for% 20policy% 20makers%20(25%20OCT).pdf
  • De Jesus, A. L., M. M. Rahman, M. Mazaheri, H. Thompson, L. D. Knibbs, C. Jeong, G. Evans, W. Nei, A. Ding, L. Qiao, et al. 2019. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 129:118–35. doi: 10.1016/j.envint.2019.05.021.
  • Denier van der Gon, H. A. C., A. J. H. Visschedijk, C. Johansson, E. Hedberg Larsson, R. Harrison, and D. Beddows. 2009. Size resolved pan European anthropogenic particle number inventory, EUCAARI Deliverable report D141 (available on request from EUCAARI project office). Hague, The Netherlands: TNO.
  • Donahue, N. M., A. L. Robinson, C. O. Stanier, and S. N. Pandis. 2006. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 40 (8):2635–43. doi: 10.1021/es052297c.
  • Donaldson, K., V. Stone, A. Clouter, L. Renwick, and W. MacNee. 2001. Ultrafine particles. Occup. Environ. Med. 58 (3):211–6, 199. doi: 10.1136/oem.58.3.211.
  • Eeftens, M., H. C. Phuleria, R. Meier, I. Aguilera, E. Corradi, M. Davey, R. Ducret-Stich, M. Fierz, R. Gehrig, A. Ineichen, et al. 2015. Spatial and temporal variability of ultrafine particles, NO2, PM2.5, PM2.5 absorbance, PM10 and PMcoarse in Swiss study areas. Atmos. Environ. 111:60–70. doi: 10.1016/j.atmosenv.2015.03.031.
  • Environ 2003. User’s guide to the comprehensive air quality model with extensions (CAMx). Version 4.02, report, ENVIRON International Corporation, Novato, CA.
  • Fountoukis, C., P. N. Racherla, H. A. C. Denier van der Gon, P. Polymeneas, P. E. Charalampidis, C. Pilinis, A. Wiedensohler, M. Dall’Osto, C. O'Dowd, and S. N. Pandis. 2011. Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign. Atmos. Chem. Phys. 11 (20):10331–47. doi: 10.5194/acp-11-10331-2011.
  • Fountoukis, C., I. Riipinen, H. A. C. Denier van der Gon, P. E. Charalampidis, C. Pilinis, A. Wiedensohler, C. O'Dowd, J. P. Putaud, M. Moerman, and S. N. Pandis. 2012. Simulating ultrafine particle formation in Europe using a regional CTM: Contribution of primary emissions versus secondary formation to aerosol number concentrations. Atmos. Chem. Phys. 12 (18):8663–77. doi: 10.5194/acp-12-8663-2012.
  • Gaydos, T., R. Pinder, B. Koo, K. Fahey, G. Yarwood, and S. N. Pandis. 2007. Development and application of a three-dimensional chemical transport model, PMCAMx. Atmos. Environ. 41 (12):2594–611. doi: 10.1016/j.atmosenv.2006.11.034.
  • Giechaskiel, B., A. Melas, G. Martini, and P. Dilara. 2021. Overview of vehicle exhaust particle number regulations. Processes 9 (12):2216. doi: 10.3390/pr9122216.
  • Giechaskiel, B., A. Melas, G. Martini, P. Dilara, and L. Ntziachristos. 2022. Revisiting total particle number measurements for vehicle exhaust regulations. Atmosphere 13 (2):155. doi: 10.3390/atmos13020155.
  • Halek, F., M. Kianpour-Rad, and A. Kavousirahim. 2010. Seasonal variation in ambient PM mass and number concentrations (case study: Tehran, Iran). Environ. Monit. Assess. 169 (1–4):501–7. doi: 10.1007/s10661-009-1192-2.
  • HEI Review Panel on Ultrafine Particles 2013. Understanding the health effects of ambient ultrafine particles. HEI perspectives 3. Boston, MA: Health Effects Institute.
  • Hussein, T., A. Puustinen, P. P. Aalto, J. M. Mäkelä, K. Hämeri, and M. Kulmala. 2004. Urban aerosol number size distributions. Atmos. Chem. Phys. 4 (2):391–411. doi: 10.5194/acp-4-391-2004.
  • Jalava, P. I., R. O. Salonen, A. S. Pennanen, M. Sillanpää, A. I. Hälinen, M. S. Happo, R. Hillamo, B. Brunekreef, K. Katsouyanni, J. Sunyer, et al. 2007. Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns. Inhal. Toxicol. 19 (3):213–25. doi: 10.1080/08958370601067863.
  • Jung, J. G., C. Fountoukis, P. J. Adams, and S. N. Pandis. 2010. Simulation of in situ ultrafine particle formation in the eastern United States using PMCAMx-UF. J. Geophys. Res. 115 (D3):D03203. doi: 10.1029/2009JD012313.
  • Jung, J., P. J. Adams, and S. N. Pandis. 2006. Simulating the size distribution and chemical composition of ultrafine particles during nucleation events. Atmos. Environ. 40 (13):2248–59. doi: 10.1016/j.atmosenv.2005.09.082.
  • Karydis, V. A., A. P. Tsimpidi, and S. N. Pandis. 2007. Evaluation of a three-dimensional chemical transport model (PMCAMx) in the eastern United States for all four seasons. J. Geophys. Res. 112 (D14):D14211. doi: 10.1029/2006JD007890.
  • Kittelson, D., I. Khalek, J. McDonald, J. Stevens, and R. Giannelli. 2022. Particle emissions from mobile sources: Discussion of ultrafine particle emissions and definition. J. Aerosol Sci. 159:1–31. doi: 10.1016/j.jaerosci.2021.105881.
  • Kulmala, M., A. Asmi, H. K. Lappalainen, U. Baltensperger, J.-L. Brenguier, M. C. Facchini, H.-C. Hansson, Ø. Hov, C. D. O'Dowd, U. Pöschl, et al. 2011. General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – Integrating aerosol research from nano to global scales. Atmos. Chem. Phys. 11 (24):13061–143. doi: 10.5194/acp-11-13061-2011.
  • Kumar, P., A. Wiedensohler, W. Birmili, P. Quincey, and M. Hallquist. 2016. Ultrafine particles pollution and measurements. The Quality of Air 73:369–90. doi: 10.1016/bs.coac.2016.04.004.
  • Kuwayama, T., C. R. Ruehl, and M. J. Kleeman. 2013. Daily trends and source apportionment of ultrafine particulate mass (PM0.1) over an annual cycle in a typical California city. Environ. Sci. Technol. 47 (24):13957–66. doi: 10.1021/es403235c.
  • Kwon, H. S., M. H. Ryu, and C. Carlsten. 2020. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 52 (3):318–28. doi: 10.1038/s12276-020-0405-1.
  • Li, N., C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, and A. Nel. 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111 (4):455–60. doi: 10.1289/ehp.6000.
  • Mönkkönen, P., I. K. Koponen, K. E. Lehtinen, K. Hämeri, R. Uma, and M. Kulmala. 2005. Measurements in a highly polluted Asian mega city: Observations of aerosol number size distribution, modal parameters and nucleation events. Atmos. Chem. Phys. 5 (1):57–66. doi: 10.5194/acp-5-57-2005.
  • Napari, I., M. Noppel, H. Vehkamaki, and M. Kulmala. 2002. Parameterization of ternary nucleation rates for H2SO4-NH3-H2O vapors. J. Geophys. Res. 107 (D19):4381. 2JD002132 doi: 10.1029/200.
  • Ohlwein, S., R. Kappeler, M. Kutlar Joss, N. Künzli, and B. Hoffmann. 2019. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 64 (4):547–59. doi: 10.1007/s00038-019-01202-7.
  • Ostro, B., J. Hu, D. Goldberg, P. Reynolds, A. Hertz, L. Bernstein, and M. J. Kleeman. 2015. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: Results from the California Teachers Study Cohort. Environ. Health Perspect. 123 (6):549–56. doi: 10.1289/ehp.1408565.
  • Patoulias, D., and S. N. Pandis. 2022. Simulation of the effects of low-volatility organic compounds on aerosol number concentrations in Europe. Atmos. Chem. Phys. 22 (3):1689–706. doi: 10.5194/acp-22-1689-2022.
  • Patoulias, D., C. Fountoukis, I. Riipinen, and S. N. Pandis. 2015. The role of organic condensation on ultrafine particle growth during nucleation events. Atmos. Chem. Phys. 15 (11):6337–50. doi: 10.5194/acp-15-6337-2015.
  • Patoulias, D., C. Fountoukis, I. Riipinen, A. Asmi, M. Kulmala, and S. N. Pandis. 2018. Simulation of the size-composition distribution of atmospheric nanoparticles over Europe. Atmos. Chem. Phys. 18 (18):13639–54. doi: 10.5194/acp-18-13639-2018.
  • Schraufnagel, D. E. 2020. The health effects of ultrafine particles. Exp. Mol. Med. 52 (3):311–7. doi: 10.1038/s12276-020-0403-3.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. 3rd ed. New York, NY: Wiley and Sons.
  • Traboulsi, H., N. Guerrina, M. Iu, D. Maysinger, P. Ariya, and C. Baglole. 2017. Inhaled pollutants: The molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int. J. Mol. Sci. 18:243. doi: 10.3390/ijms18020243.
  • U.S. EPA 2019. Integrated science assessment (ISA) for particulate matter (EPA Document No. EPA 600/R-19/188), U.S. Environmental Protection Agency.
  • WHO Regional Office for Europe 2013. Review of evidence on health aspects of air pollution – REVIHAAP. Copenhagen: World Health Organisation.
  • Weichenthal, S., L. Bai, M. Hatzopoulou, K. Van Ryswyk, J. C. Kwong, M. Jerrett, A. van Donkelaar, R. V. Martin, R. T. Burnett, H. Lu, et al. 2017. Long-term exposure to ambient ultrafine particles and respiratory disease incidence in in Toronto, Canada: A cohort study. Environ. Health 16 (1):64. doi: 10.1186/s12940-017-0276-7.
  • Wiedensohler, A., W. Birmili, A. Nowak, A. Sonntag, K. Weinhold, M. Merkel, B. Wehner, T. Tuch, S. Pfeifer, M. Fiebig, et al. 2012. Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos. Meas. Tech. 5 (3):657–85. doi: 10.5194/amt-5-657-2012.
  • Xue, W., J. Xue, A. Mousavi, C. Sioutas, and M. J. Kleeman. 2020a. Positive matrix factorization of ultrafine particle mass (PM0.1) at three sites in California. Sci. Total Environ. 715:136902. doi: 10.1016/j.scitotenv.2020.136902.
  • Xue, W., J. Xue, F. Shirmohammadi, C. Sioutas, A. Lolinco, A. Hasson, and M. J. Kleeman. 2020b. Day-of-week patterns for ultrafine particulate matter components at four sites in California. Atmos. Environ. 222:117088. doi: 10.1016/j.atmosenv.2019.117088.
  • Yu, X., M. Venecek, A. Kumar, J. Hu, S. Tanrikulu, S. T. Soon, C. Tran, D. Fairley, and M. J. Kleeman. 2019. Regional sources of airborne ultrafine particle number and mass concentrations in California. Atmos. Chem. Phys. 19 (23):14677–702. doi: 10.5194/acp-19-14677-2019.
  • Zhang, R., G. Wang, S. Guo, M. L. Zamora, Q. Ying, Y. Lin, W. Wang, M. Hu, and Y. Wang. 2015. Formation of urban fine particulate matter. Chem. Rev. 115 (10):3803–55. doi: 10.1021/acs.chemrev.5b00067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.