172
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Influence of electrostatic collection on scavenging of submicron-sized aerosols by cloud droplets and raindrops

, ORCID Icon &
Pages 1154-1173 | Received 08 Mar 2023, Accepted 14 Aug 2023, Published online: 14 Sep 2023

References

  • Ambaum, M. H. P., T. Auerswald, R. Eaves, and R. G. Harrison. 2022. Enhanced attraction between drops carrying fluctuating charge distributions. Proc. Math. Phys. Eng. Sci. 478 (2257):20210714. doi: 10.1098/rspa.2021.0714.
  • Andronache, C. 2003. Estimated variability of bellow-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys. 3 (1):131–43. doi: 10.5194/acp-3-131-2003.
  • Andronache, C. 2004. Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles. J. Aerosol Sci. 35 (12):1467–82. doi: 10.1016/S0021-8502(04)00290-3.
  • Andronache, C., T. Gronholm, L. Laakso, V. Phillips, and A. Venalainen. 2006. Scavenging of ultrafine particles by rainfall at a boreal site: Observations and model estimations. Atmos. Chem. Phys. 6:4739–54.
  • Brattich, E., E. S. Castillo, F. Giulietti, J.-B. Renard, S. N. Tripathi, K. Ghosh, G. Berthet, D. Vignelles, and L. Tositti. 2019. Measurements of aerosols and charged particles on the BEXUS18 stratospheric balloon. Ann. Geophys. 34:389–403.
  • Cherrier, G., E. Belut, F. Gerardin, A. Tanière, and N. Rimbert. 2017. Aerosol particles scavenging by a droplet: Microphysical modeling in the greenfield gap. Atmos. Environ. 166:519–30. doi: 10.1016/j.atmosenv.2017.07.052.
  • DeMott, P. J. 1995. Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res. 38 (1–4):63–99. doi: 10.1016/0169-8095(94)00088-U.
  • DeMott, P. J., W. G. Finnegan, and L. O. Grant. 1983. An application of chemical kinetic theory and methodology to characterize the ice nucleating properties of aerosols used in weather modification. J. Clim. Appl. Meteor. 22 (7):1190–203. doi: 10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2.
  • Depee, A., P. Lemaitre, T. Gelain, A. Mathieu, M. Monier, and A. Flossmann. 2019. Theoretical study of aerosol particle electroscavenging by clouds. J. Aerosol Sci. 135:1–20. doi: 10.1016/j.jaerosci.2019.04.001.
  • Depee, A., P. Lemaitre, T. Gelain, M. Monier, and A. Flossmann. 2021. Laboratory study of the collection efficiency of submicron aerosol particles by cloud droplets – Part II: Influence of electric charges. Atmos. Chem. Phys. 21 (9):6963–84. doi: 10.5194/acp-21-6963-2021.
  • Dhanorkar, S., and A. Kamra. 2001. Effect of coagulation on the particle charge distribution and air conductivity. J. Geophys. Res. 106 (D11):12055–65. doi: 10.1029/2000JD900709.
  • Ferrier, B. S. 1994. A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci. 51:249–280. doi: 10.1175/1520-0469(1994)051 < 0249:ADMMPF>2.0.CO;2.
  • Fuchs, N. A. 1963. On the stationary charge distribution on aerosol particles in bipolar ionic atmosphere. Geofis. Pura Appl. 56 (1):185–93. doi: 10.1007/BF01993343.
  • Ghosh, K., S. N. Tripathi, M. Joshi, Y. S. Mayya, A. Khan, and B. K. Sapra. 2021. Effect of charge on aerosol microphysics of particles emitted from a hot wire generator: Theory and experiments. Aerosol. Sci. Technol. 55 (9):1084–98. doi: 10.1080/02786826.2021.1931011.
  • Ghosh, K., S. N. Tripathi, M. Joshi, Y. S. Mayya, A. Khan, and B. K. Sapra. 2017. Model studies on coagulation of charged particles and comparison with experiments. J. Aerosol Sci. 105:35–47. doi: 10.1016/j.jaerosci.2016.11.019.
  • Hall, W. D., and H. R. Pruppacher. 1976. The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci. 33 (10):1995–2006. doi: 10.1175/1520-0469(1976)033 < 1995:TSOIPF>2.0.CO;2.
  • Harrison, R. G., K. A. Nicoll, and M. H. P. Ambaum. 2015. On the microphysical effects of observed cloud edge charging. Q. J. R. Meteorol. Soc. 141 (692):2690–9. doi: 10.1002/qj.2554.
  • Jones, A. C., A. Hill, J. Hemmings, P. Lemaitre, A. Querel, C. L. Ryder, and S. Woodward. 2022. Bellow-cloud scavenging of aerosol by rain: A review of numerical modelling approaches and sensitivity simulations with mineral dust in the Met Office’s Unified Model. Atmos. Chem. Phys. 22 (17):11381–407. doi: 10.5194/acp-22-11381-2022.
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton. 1995. A comparison of seeded and non-seeded orographic cloud simulations with an explicit cloud model. J. Appl. Meteor. 34 (4):834–46. doi: 10.1175/1520-0450(1995)034<0834:ACOSAN>2.0.CO;2.
  • Nicoll, K. A., and R. G. Harrison. 2016. Stratiform cloud electrification: comparison of theory with multiple in-cloud measurements. Q. J. R. Meteorol. Soc. 142:2679–91. doi: 10.1002/qj.2858.
  • Pruppacher, H. R., and J. D. Klett. 1997. Microphysics of cloud and precipitation. Dordrecht: Kluwer Academic Publishers.
  • Rawal, A., S. N. Tripathi, M. Michael, A. K. Srivastava, and R. G. Harrison. 2013. Quantifying the importance of galactic cosmic rays in cloud microphysical processes. J. Atmos. Sol. Terr. Phys. 102:243–51. doi: 10.1016/j.jastp.2013.05.017.
  • Takahashi, T. 1973. Measurement of electric charge of cloud droplets, drizzle, and raindrops. Rev. Geophys. 11 (4):903–24. doi: 10.1029/RG011i004p00903.
  • Tinsley, B. A. 2000. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 94 (1/2):231–58. doi: 10.1023/A:1026775408875.
  • Tinsley, B. A., R. P. Rohrbaugh, M. Hei, and K. V. Beard. 2000. Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. J. Atmos. Sci. 57 (13):2118–34. doi: 10.1175/1520-0469(2000)057<2118:EOICOT>2.0.CO;2.
  • Tinsley, B., R. Rohrbaugh, and M. Hei. 2001. Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos. Res. 59–60:115–35. doi: 10.1016/S0169-8095(01)00112-0.
  • Vučković, V., and D. Vujović. 2017. The effect of mass transfer parameterization and ice retention on the scavenging and redistribution of SO2 by a deep convective cloud. Environ. Sci. Pollut. Res. Int. 24 (4):3970–84. doi: 10.1007/s11356-016-8152-5.
  • Vučković, V., D. Vujović, and A. Jovanović. 2022. Aerosol parameterisation in a three-moment microphysical scheme: Numerical simulation of submicronsized aerosol scavenging. Atmos. Res. 273:106148. doi: 10.1016/j.atmosres.2022.106148.
  • Vujović, D., and V. Vučković. 2012. An aqueous chemistry module for a three-dimensional cloud resolving model: Sulfate redistribution. J. Serb. Chem. Soc. 77 (9):1273–85.
  • Wang, P. K., S. N. Grover, and H. R. Pruppacher. 1978. On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops. J. Atmos. Sci. 35 (9):1735–43. doi: 10.1175/1520-0469(1978)035 < 1735:OTEOEC>2.0.CO;2.
  • Wang, X., L. Zhang, and M. D. Moran. 2010. Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain. Atmos. Chem. Phys. 10 (12):5685–705. doi: 10.5194/acp-10-5685-2010.
  • Wang, X., L. Zhang, and M. D. Moran. 2014. Development of a new semi-empirical parameterization for below-cloud scavenging of size-resolved aerosol particles by both rain and snow. Geosci. Model Dev. 7:799–819. doi: 10.5194/gmd-7-799-2014.
  • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci. 19 (3):387–9. doi: 10.1016/0021-8502(88)90278-9.
  • Xue, M., K. K. Droegemeier, and V. Wong. 2000. The advanced regional prediction system (ARPS)–A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys. 75 (3–4):161–93. doi: 10.1007/s007030070003.
  • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D. Wang. 2001. The advanced regional prediction system (ARPS)–A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part II: Model physics and applications. Meteorol. Atmos. Phys. 76 (1–4):143–65. doi: 10.1007/s007030170027.
  • Zhang, L., Z. Gu, C. Yu, Y. Zhang, and Y. Cheng. 2016. Surface charges on aerosol particles – Accelerating particle growth rate and atmospheric pollution. Indoor Built Environ. 25 (3):437–40. doi: 10.1177/1420326X16643799.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.