182
Views
0
CrossRef citations to date
0
Altmetric
Technical Note

Impact of test methodology on the efficacy of triethylene glycol (Grignard Pure) against bacteriophage MS2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , & show all
Pages 1178-1185 | Received 01 Apr 2023, Accepted 15 Sep 2023, Published online: 09 Oct 2023

References

  • Ballantyne, B., and W. M. Snellings. 2007. Triethylene glycol ho(ch2ch2o)3h. J. Appl. Toxicol. 27 (3):291–9. doi:10.1002/jat.1220.
  • Baselga, M., J. J. Alba, and A. J. Schuhmacher. 2023. Impact of needle-point bipolar ionization system in the reduction of bioaerosols in collective transport. Sci. Total Environ. 855:158965. doi:10.1016/j.scitotenv.2022.158965.
  • Blatchley, E. R., D. J. Brenner, H. Claus, T. E. Cowan, K. G. Linden, Y. Liu, T. Mao, S.-J. Park, P. J. Piper, R. M. Simons, et al. 2023. Far UV-c radiation: An emerging tool for pandemic control. Crit. Rev. Environ. Sci. Technol. 53 (6):733–53. doi:10.1080/10643389.2022.2084315.
  • Bono, N., F. Ponti, C. Punta, and G. Candiani. 2021. Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: An overview. Materials 14 (5):1075. doi:10.3390/ma14051075.
  • Bourouiba, L. 2021. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech. 53 (1):473–508. doi:10.1146/annurev-fluid-060220-113712.
  • Bueno de Mesquita, P. J., W. W. Delp, W. R. Chan, W. P. Bahnfleth, and B. C. Singer. 2022. Control of airborne infectious disease in buildings: Evidence and research priorities. Indoor Air 32 (1):e12965. doi:10.1111/ina.12965.
  • Buising, K. L., R. Schofield, L. Irving, M. Keywood, A. Stevens, N. Keogh, G. Skidmore, I. Wadlow, K. Kevin, B. Rismanchi, et al. 2022. Use of portable air cleaners to reduce aerosol transmission on a hospital coronavirus disease 2019 (COVID-19) ward. Infect. Control Hosp. Epidemiol. 43 (8):987–92. doi:10.1017/ice.2021.284.
  • Desai, G., G. Ramachandran, E. Goldman, W. Esposito, A. Galione, A. Lal, T. K. Choueiri, A. Fay, W. Jordan, D. W. Schaffner, et al. 2023. Efficacy of grignard pure to inactivate airborne phage ms2, a common SARS-CoV-2 surrogate. Environ. Sci. Technol. 57 (10):4231–40. doi:10.1021/acs.est.2c08632.
  • Eadie, E., W. Hiwar, L. Fletcher, E. Tidswell, P. O'Mahoney, M. Buonanno, D. Welch, C. S. Adamson, D. J. Brenner, C. Noakes, et al. 2022. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber. Sci. Rep. 12 (1):4373. doi:10.1038/s41598-022-08462-z.
  • Fadaei, A. 2021. Ventilation systems and COVID-19 spread: Evidence from a systematic review study. Eur. J. Sustainable Dev. Res. 5 (2):em0157. doi:10.21601/ejosdr/10845.
  • Fischer, R. J., J. R. Port, M. G. Holbrook, K. C. Yinda, M. Creusen, J. ter Stege, M. de Samber, and V. J. Munster. 2022. UV-c light completely blocks aerosol transmission of hghly cntagious SARS-CoV-2 variants wa1 and delta in hamsters. Environ. Sci. Technol. 56 (17):12424–30. doi:10.1021/acs.est.2c02822.
  • Forschungsgemeinschaft, D. 2020. List of substances. In List of MAK and BAT values, vol. 2019, 20–138. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Gomez, O., K. M. McCabe, E. Biesiada, B. Volbers, E. Kraus, M. N. Caballero, and M. Hernandez. 2022. Airborne murine coronavirus response to low levels of hypochlorous acid, hydrogen peroxide and glycol vapors. Aerosol Sci. Technol. 56 (11):1047–57. doi:10.1080/02786826.2022.2120794.
  • Kropinski, A. M., A. Mazzocco, T. E. Waddell, E. Lingohr, and R. P. Johnson. 2009. Enumeration of bacteriophages by double agar overlay plaque assay. In Bacteriophages: Methods and protocols, volume 1: Isolation, characterization, and interactions, ed. M. R. J. Clokie and A. M. Kropinski, 69–76. Totowa, NJ: Humana Press.
  • Lester, W. Jr, S. Kaye, O. Robertson, and E. W. Dunklin. 1950. Factors of importance in the use of triethylene glycol vapor for aerial disinfection. Am. J. Public Health Nations. Health 40 (7):813–20. doi:10.2105/ajph.40.7.813.
  • National Academies of Sciences, Engineering, and Medicine. 2020. The national academies collection: Reports funded by National Institutes of Health. In Airborne Transmission of SARS-CoV-2: Proceedings of a Workshop—in Brief, ed. A. Staudt, J. Saunders, J. Pavlin, and M. Shelton-Davenport. Washington, DC: National Academies Press (US).
  • Park, S., R. Mistrick, and D. Rim. 2022. Performance of upper-room ultraviolet germicidal irradiation (UVGI) system in learning environments: Effects of ventilation rate, UV fluence rate, and UV radiating volume. Sustainable Cities Soc. 85:104048. doi:10.1016/j.scs.2022.104048.
  • Peng, Z., A. L. P. Rojas, E. Kropff, W. Bahnfleth, G. Buonanno, S. J. Dancer, J. Kurnitski, Y. Li, M. G. L. C. Loomans, L. C. Marr, et al. 2022. Practical indicators for risk of airborne transmission in shared indoor environments and their application to COVID-19 outbreaks. Environ. Sci. Technol. 56 (2):1125–37. doi:10.1021/acs.est.1c06531.
  • Puck, T. T. 1947a. The mechanism of aerial disinfection by glycols and other chemical agents: I. Demonstration that the germicidal action occurs through the agency of the vapor phase. J. Exp. Med. 85 (6):729–39. doi:10.1084/jem.85.6.729.
  • Puck, T. T. 1947b. The mechanism of aerial disinfection by glycols and other chemical agents: Ii. An analysis of the factors governing the efficiency of chemical disinfection of the air. J. Exp. Med. 85 (6):741–57. doi:10.1084/jem.85.6.741.
  • Ratliff, K. M., L. Oudejans, J. Archer, W. Calfee, J. U. Gilberry, D. A. Hook, W. E. Schoppman, R. W. Yaga, L. Brooks, and S. Ryan. 2023. Large-scale evaluation of microorganism inactivation by bipolar ionization and photocatalytic devices. Build. Environ. 227:109804. doi:10.1016/j.buildenv.2022.109804.
  • Robertson, O. H., E. Bigg, B. F. Miller, and Z. Baker. 1941. Sterilization of air by certain glycols employed as aerosols. Science 93 (2409):213–4. doi:10.1126/science.93.2409.213.
  • Robertson, O., T. T. Puck, H. F. Lemon, and C. G. Loosli. 1943. The lethal effect of triethylene glycol vapor on air-borne bacteria and influenza virus. Science 97 (2510):142–4. doi:10.1126/science.97.2510.142-b.
  • Rodríguez, M., M. L. Palop, S. Seseña, and A. Rodríguez. 2021. Are the portable air cleaners (pac) really effective to terminate airborne SARS-CoV-2? Sci. Total Environ. 785:147300. doi:10.1016/j.scitotenv.2021.147300.
  • Rogak, S. N., A. Rysanek, J. M. Lee, S. V. Dhulipala, N. Zimmerman, M. Wright, and M. Weimer. 2022. The effect of air purifiers and curtains on aerosol dispersion and removal in multi-patient hospital rooms. Indoor Air 32 (10):e13110. doi:10.1111/ina.13110.
  • Rudnick, S. N., J. J. McDevitt, M. W. First, and J. D. Spengler. 2009. Inactivating influenza viruses on surfaces using hydrogen peroxide or triethylene glycol at low vapor concentrations. Am. J. Infect. Control. 37 (10):813–9. doi:10.1016/j.ajic.2009.06.007.
  • Rutala, W. A., and D. J. Weber. 2014. Selection of the ideal disinfectant. Infect. Control Hosp. Epidemiol. 35 (7):855–65. doi:10.1086/676877.
  • Samet, J. M., K. Prather, G. Benjamin, S. Lakdawala, J.-M. Lowe, A. Reingold, J. Volckens, and L. C. Marr. 2021. Airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): What we know. Clin. Infect. Dis. 73 (10):1924–6. doi:10.1093/cid/ciab039.
  • Spaulding, E. H., and E. K. Emmons. 1958. Chemical disinfection. Am. J. Nurs. 58 (9):1238–42. doi:10.2307/3472880.
  • Tang, J. W., W. P. Bahnfleth, P. M. Bluyssen, G. Buonanno, J. L. Jimenez, J. Kurnitski, Y. Li, S. Miller, C. Sekhar, L. Morawska, et al. 2021. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Hosp. Infect. 110:89–96. doi:10.1016/j.jhin.2020.12.022.
  • Wang, C. C., K. A. Prather, J. Sznitman, J. L. Jimenez, S. S. Lakdawala, Z. Tufekci, and L. C. Marr. 2021. Airborne transmission of respiratory viruses. Science 373 (6558):eabd9149. doi:10.1126/science.abd9149.
  • Wise, H., and T. T. J. S. Puck. 1947. Saturation concentrations of triethylene glycol vapor at various relative humidities and temperatures. Science 105 (2734):556–7. doi:10.1126/science.105.2734.556.
  • Zeng, Y., M. Heidarinejad, and B. Stephens. 2022. Evaluation of an in-duct bipolar ionization device on particulate matter and gas-phase constituents in a large test chamber. Build. Environ. 213:108858. doi:10.1016/j.buildenv.2022.108858.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.