247
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Multi-modal chemical characterization of highly viscous submicrometer organic particles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1251-1263 | Received 03 Aug 2023, Accepted 27 Sep 2023, Published online: 24 Oct 2023

References

  • Aiken, A. C., D. Salcedo, M. J. Cubison, J. A. Huffman, P. F. DeCarlo, I. M. Ulbrich, K. S. Docherty, D. Sueper, J. R. Kimmel, D. R. Worsnop, et al. 2009. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment. Atmos. Chem. Phys. 9 (17):6633–53. doi: 10.5194/acp-9-6633-2009.
  • Andreae, M. O., and P. J. Crutzen. 1997. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science. 276 (5315):1052–8. doi: 10.1126/science.276.5315.1052.
  • Andreae, M. O., and D. Rosenfeld. 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 89 (1–2):13–41. doi: 10.1016/j.earscirev.2008.03.001.
  • Baboomian, V. J., G. V. Crescenzo, Y. Huang, F. Mahrt, M. Shiraiwa, A. K. Bertram, and S. A. Nizkorodov. 2022. Sunlight can convert atmospheric aerosols into a glassy solid state and modify their environmental impacts. Proc. Natl. Acad. Sci. USA. 119 (43):e2208121119. doi: 10.1073/pnas.2208121119.
  • Bateman, A. P., H. Belassein, and S. T. Martin. 2014. Impactor apparatus for the study of particle rebound: Relative humidity and capillary forces. Aerosol Sci. Technol. 48 (1):42–52. doi: 10.1080/02786826.2013.853866.
  • Bateman, A. P., Z. Gong, P. Liu, B. Sato, G. Cirino, Y. Zhang, P. Artaxo, A. K. Bertram, A. O. Manzi, L. V. Rizzo, et al. 2016. Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest. Nature Geosci. 9 (1):34–7. doi: 10.1038/ngeo2599.
  • Bumbrah, G. S., and R. M. Sharma. 2016. Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic Sci. 6 (3):209–15. doi: 10.1016/j.ejfs.2015.06.001.
  • Cai, D., A. Neyer, R. Kuckuk, and H. M. Heise. 2010. Raman, mid-infrared, near-infrared and ultraviolet–visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J. Mol. Struct. 976 (1–3):274–81. doi: 10.1016/j.molstruc.2010.03.054.
  • Cai, H., E. G. Xu, F. Du, R. Li, J. Liu, and H. Shi. 2021. Analysis of environmental nanoplastics: Progress and challenges. Chem. Eng. J. 410:128208. doi: 10.1016/j.cej.2020.128208.
  • Cai, J., M. Zheng, C.-Q. Yan, H.-Y. Fu, Y.-J. Zhang, M. Li, Z. Zhou, and Y.-H. Zhang. 2015. Application and progress of single particle aerosol time-of-flight mass spectrometry in fine particulate matter research. Chin. J. Anal. Chem. 43 (5):765–74. doi: 10.1016/S1872-2040(15)60825-8.
  • Cochran, R. E., O. Laskina, J. V. Trueblood, A. D. Estillore, H. S. Morris, T. Jayarathne, C. M. Sultana, C. Lee, P. Lin, J. Laskin, et al. 2017. Molecular diversity of sea spray aerosol particles: Impact of ocean biology on particle composition and hygroscopicity. Chem. 2 (5):655–67. doi: 10.1016/j.chempr.2017.03.007.
  • Davidson, C. I., R. F. Phalen, and P. A. Solomon. 2005. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 39 (8):737–49. doi: 10.1080/02786820500191348.
  • De Gouw, J., and J. L. Jimenez. 2009. Organic aerosols in the earth’s atmosphere. Environ. Sci. Technol. 43 (20):7614–8. doi: 10.1021/es9006004.
  • Folkers, M., T. Mentel, and A. Wahner. 2003. Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5: Organic coatings and aerosol reactivity. Geophys. Res. Lett. 30 (12). doi: 10.1029/2003GL017168.
  • Fraund, M., D. J. Bonanno, S. China, D. Q. Pham, D. Veghte, J. Weis, G. Kulkarni, K. Teske, M. K. Gilles, A. Laskin, et al. 2020. Optical properties and composition of viscous organic particles found in the Southern Great Plains. Atmos. Chem. Phys. 20:11593–606. doi: 10.5194/acp-20-11593-2020.
  • Fraund, M., T. Park, L. Yao, D. Bonanno, D. Q. Pham, and R. C. Moffet. 2019. Quantitative capabilities of STXM to measure spatially resolved organic volume fractions of mixed organic/inorganic particles. Atmos. Meas. Tech. 12 (3):1619–33. doi: 10.5194/amt-12-1619-2019.
  • Hand, J. L., W. C. Malm, A. Laskin, D. Day, T. Lee, C. Wang, C. Carrico, J. Carrillo, J. P. Cowin, J. Collett, et al. 2005. Optical, physical, and chemical properties of tar balls observed during the Yosemite aerosol characterization study. J. Geophys. Res. 110 (D21):D21210. doi: 10.1029/2004JD005728.
  • Hasberg, A. K. M., S. Bijaksana, P. Held, J. Just, M. Melles, M. A. Morlock, S. Opitz, J. M. Russell, H. Vogel, and V. Wennrich. 2019. Modern sedimentation processes in Lake Towuti, Indonesia, revealed by the composition of surface sediments. Sedimentology. 66 (2):675–98. doi: 10.1111/sed.12503.
  • Haywood, J., and O. Boucher. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 38 (4):513–43. doi: 10.1029/1999RG000078.
  • Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto. 2015. Tropospheric aqueous-phase chemistry: Kinetics, mechanisms, and its coupling to a changing gas phase. Chem. Rev. 115 (10):4259–334. doi: 10.1021/cr500447k.
  • Hinds, W. C. 1999. Uniform particle motion: Settling velocity and mechanical mobility. In Aerosol technology: Properties, behavior, and measurement of airborne particles, 46–8. New York: Wiley.
  • Ignatius, K., T. B. Kristensen, E. Järvinen, L. Nichman, C. Fuchs, H. Gordon, P. Herenz, C. R. Hoyle, J. Duplissy, S. Garimella, et al. 2016. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene. Atmos. Chem. Phys. 16 (10):6495–509. doi: 10.5194/acp-16-6495-2016.
  • Kilcoyne, A. L. D., T. Tyliszczak, W. F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E. G. Rightor, G. E. Mitchell, et al. 2003. Interferometer-controlled scanning transmission X-ray microscopes at the advanced light source. J. Synchrotron Radiat. 10 (Pt 2):125–36. doi: 10.1107/S0909049502017739.
  • Kimura, H. 1998. A simple method for the anionic polymerization of α-carbonyl acids in water. J. Polym. Sci. A Polym. Chem. 36 (1):189–93. doi: 10.1002/(SICI)1099-0518(19980115)36:1 < 189::AID-POLA23 > 3.0.CO;2-E.
  • Kirz, J., H. Ade, C. Jacobsen, C. ‐. Ko, S. Lindaas, I. McNulty, D. Sayre, S. Williams, X. Zhang, and M. Howells. 1992. Soft x‐ray microscopy with coherent x rays (invited). Rev. Sci. Instrum. 63 (1):557–63. doi: 10.1063/1.1142705.
  • Koop, T., J. Bookhold, M. Shiraiwa, and U. Pöschl. 2011. Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 13 (43):19238–55. doi: 10.1039/c1cp22617g.
  • Krause, N., S. Kuhn, E. Frotscher, F. Nikels, A. Hawe, P. Garidel, and T. Menzen. 2021. Oil-immersion flow imaging microscopy for quantification and morphological characterization of submicron particles in biopharmaceuticals. Aaps J. 23 (1):13. doi: 10.1208/s12248-020-00547-9.
  • Kusch, P. 2020. Challenges in the analysis of micro and nanoplastics. In Handbook of microplastics in the environment, ed. T. Rocha-Santos, M. Costa, C. Mouneyrac, 1–26. Cham: Springer International Publishing.
  • Laskin, A., J. P. Cowin, and M. J. Iedema. 2006. Analysis of individual environmental particles using modern methods of electron microscopy and X-ray microanalysis. J. Electron Spectrosc. Relat. Phenom. 150 (2–3):260–74. doi: 10.1016/j.elspec.2005.06.008.
  • Laskin, A., M. K. Gilles, D. A. Knopf, B. Wang, and S. China. 2016. Progress in the analysis of complex atmospheric particles. Annu. Rev. Anal. Chem. (Palo Alto Calif.). 9 (1):117–43. doi: 10.1146/annurev-anchem-071015-041521.
  • Laskin, A., R. C. Moffet, and M. K. Gilles. 2019. Chemical imaging of atmospheric particles. Acc. Chem. Res. 52 (12):3419–31. doi: 10.1021/acs.accounts.9b00396.
  • Liu, L., J. Zhang, Y. Zhang, Y. Wang, L. Xu, Q. Yuan, D. Liu, Y. Sun, P. Fu, Z. Shi, et al. 2021. Persistent residential burning-related primary organic particles during wintertime hazes in North China: Insights into their aging and optical changes. Atmos. Chem. Phys. 21 (3):2251–65. doi: 10.5194/acp-21-2251-2021.
  • Lohmann, U., and J. Feichter. 2005. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 5 (3):715–37. doi: 10.5194/acp-5-715-2005.
  • Mikhailov, E., S. Vlasenko, S. T. Martin, T. Koop, and U. Pöschl. 2009. Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 9 (24):9491–522. doi: 10.5194/acp-9-9491-2009.
  • Moffet, R. C., T. Henn, A. Laskin, and M. K. Gilles. 2010a. Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge. Anal. Chem. 82 (19):7906–14. doi: 10.1021/ac1012909.
  • Moffet, R. C., A. V. Tivanski, and M. K. Gilles. 2010b. Scanning transmission X-ray microscopy: Applications in atmospheric aerosol research. In Fundamentals and Applications in Aerosol Spectroscopy, eds. R. Signorell and J. P. Reid, 419−462. United States: Taylor and Francis Books, Inc.
  • Morales, A. C., J. M. Tomlin, C. P. West, F. A. Rivera-Adorno, B. N. Peterson, S. A. L. Sharpe, Y. Noh, S. M. T. Sendesi, B. E. Boor, J. A. Howarter, et al. 2022. Atmospheric emission of nanoplastics from sewer pipe repairs. Nat. Nanotechnol. 17 (11):1171–7. doi: 10.1038/s41565-022-01219-9.
  • Morales, A. C., C. P. West, B. N. Peterson, Y. Noh, A. J. Whelton, and A. Laskin. 2023. Diversity of organic components in airborne waste discharged from sewer pipes repairs. Environ. Sci. Process. Impacts. Advance online publication. doi: 10.1039/D3EM00084B.
  • Mülmenstädt, J., O. Sourdeval, J. Delanoë, and J. Quaas. 2015. Frequency of occurrence of rain from liquid‐, mixed‐, and ice‐phase clouds derived from a‐train satellite retrievals. Geophys. Res. Lett. 42 (15):6502–9. doi: 10.1002/2015GL064604.
  • Nash, D. G., T. Baer, and M. V. Johnston. 2006. Aerosol mass spectrometry: An introductory review. Int. J. Mass Spectrom. 258 (1–3):2–12. doi: 10.1016/j.ijms.2006.09.017.
  • Nguyen, T. B., P. J. Roach, J. Laskin, A. Laskin, and S. A. Nizkorodov. 2011. Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol. Atmos. Chem. Phys. 11 (14):6931–44. doi: 10.5194/acp-11-6931-2011.
  • O’Brien, R. E., A. Neu, S. A. Epstein, A. C. MacMillan, B. Wang, S. T. Kelly, S. A. Nizkorodov, A. Laskin, R. C. Moffet, and M. K. Gilles. 2014. Physical properties of ambient and laboratory-generated secondary organic aerosol: Physical properties of organic aerosol. Geophys. Res. Lett. 41 (12):4347–53. doi: 10.1002/2014GL060219.
  • Peterson, B. N., A. C. Morales, J. M. Tomlin, C. G. W. Gorman, P. E. Christ, S. A. L. Sharpe, S. M. Huston, F. A. Rivera-Adorno, B. T. O’Callahan, M. Fraund, et al. 2023. Chemical characterization of nanoplastic particles formed in airborne waste discharged from sewer pipe repairs. Environ. Sci. Process. Impacts. Advance online publication. doi: 10.1039/D3EM00193H.
  • Pöschl, U. 2005. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. Engl. 44 (46):7520–40. doi: 10.1002/anie.200501122.
  • Pósfai, M., and P. R. Buseck. 2010. Nature and climate effects of individual tropospheric aerosol particles. Annu. Rev. Earth Planet. Sci. 38 (1):17–43. doi: 10.1146/annurev.earth.031208.100032.
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld. 2001. Aerosols, climate, and the hydrological cycle. Science. 294 (5549):2119–24. doi: 10.1126/science.1064034.
  • Reid, J. P., A. K. Bertram, D. O. Topping, A. Laskin, S. T. Martin, M. D. Petters, F. D. Pope, and G. Rovelli. 2018. The viscosity of atmospherically relevant organic particles. Nat. Commun. 9 (1):956. doi: 10.1038/s41467-018-03027-z.
  • Rivera-Adorno, F., J. M. Tomlin, M. Fraund, E. Morgan, M. Laskin, R. C. Moffet, and A. Laskin. 2023. Inferring viscosity of individual substrate-deposited particles from assessment of their height-to-width ratios. Aerosol Sci. Technol. (In Press).
  • Saxena, P., and L. M. Hildemann. 1996. Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 24 (1):57–109. doi: 10.1007/BF00053823.
  • Schill, S. R., D. B. Collins, C. Lee, H. S. Morris, G. A. Novak, K. A. Prather, P. K. Quinn, C. M. Sultana, A. V. Tivanski, K. Zimmermann, et al. 2015. The impact of aerosol particle mixing state on the hygroscopicity of sea spray aerosol. ACS Cent. Sci. 1 (3):132–41. doi: 10.1021/acscentsci.5b00174.
  • Shiraiwa, M., M. Ammann, T. Koop, and U. Pöschl. 2011. Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. USA. 108 (27):11003–8. doi: 10.1073/pnas.1103045108.
  • Shiraiwa, M., Y. Li, A. P. Tsimpidi, V. A. Karydis, T. Berkemeier, S. N. Pandis, J. Lelieveld, T. Koop, and U. Pöschl. 2017. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 8 (1):15002. doi: 10.1038/ncomms15002.
  • Shiraiwa, M., and J. H. Seinfeld. 2012. Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophys. Res. Lett. 39 (24):2012GL054008. doi: 10.1029/2012GL054008.
  • Shiraiwa, M., A. Zuend, A. K. Bertram, and J. H. Seinfeld. 2013. Gas–particle partitioning of atmospheric aerosols: Interplay of physical state, non-ideal mixing and morphology. Phys. Chem. Chem. Phys. 15 (27):11441–53. doi: 10.1039/c3cp51595h.
  • Teimouri Sendesi, S. M., K. Ra, E. N. Conkling, B. E. Boor, M. Nuruddin, J. A. Howarter, J. P. Youngblood, L. M. Kobos, J. H. Shannahan, C. T. Jafvert, et al. 2017. Worksite chemical air emissions and worker exposure during sanitary sewer and stormwater pipe rehabilitation using cured-in-place-pipe (CIPP). Environ. Sci. Technol. Lett. 4 (8):325–33. doi: 10.1021/acs.estlett.7b00237.
  • Tomlin, J. M., K. A. Jankowski, F. A. Rivera-Adorno, M. Fraund, S. China, B. H. Stirm, R. Kaeser, G. S. Eakins, R. C. Moffet, P. B. Shepson, et al. 2020. Chemical imaging of fine mode atmospheric particles collected from a research aircraft over agricultural fields. ACS Earth Space Chem. 4 (11):2171–84. doi: 10.1021/acsearthspacechem.0c00172.
  • Virtanen, A., J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirilä, J. Leskinen, J. M. Mäkelä, J. K. Holopainen, U. Pöschl, M. Kulmala, et al. 2010. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467 (7317):824–7. doi: 10.1038/nature09455.
  • Wang, B., T. H. Harder, S. T. Kelly, D. S. Piens, S. China, L. Kovarik, M. Keiluweit, B. W. Arey, M. K. Gilles, and A. Laskin. 2016. Airborne soil organic particles generated by precipitation. Nature Geosci. 9 (6):433–7. doi: 10.1038/ngeo2705.
  • Wang, B., and D. A. Knopf. 2011. Heterogeneous ice nucleation on particles composed of humic-like substances impacted by O3. J. Geophys. Res. 116 (D3):D03205. doi: 10.1029/2010JD014964.
  • Wang, B., A. T. Lambe, P. Massoli, T. B. Onasch, P. Davidovits, D. R. Worsnop, and D. A. Knopf. 2012. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation: Ice nucleation by amorphous SOA. J. Geophys. Res. 117 (D16):n/a–/a. doi: 10.1029/2012JD018063.
  • West, C. P., A. C. Morales, J. Ryan, M. V. Misovich, A. P. S. Hettiyadura, F. Rivera-Adorno, J. M. Tomlin, A. Darmody, B. N. Linn, P. Lin, et al. 2023. Molecular investigation of the multi-phase photochemistry of Fe (iii)–citrate in aqueous solution. Environ. Sci. Process. Impacts. 25 (2):190–213. doi: 10.1039/D1EM00503K.
  • Worsnop, D. R., J. W. Morris, Q. Shi, P. Davidovits, and C. E. Kolb. 2002. A chemical kinetic model for reactive transformations of aerosol particles: Reactive transformation of aerosol particles. Geophys. Res. Lett. 29 (20):57–1–57-4. doi: 10.1029/2002GL015542.
  • Wu, Z. J., J. Zheng, D. J. Shang, Z. F. Du, Y. S. Wu, L. M. Zeng, A. Wiedensohler, and M. Hu. 2016. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmos. Chem. Phys. 16 (2):1123–38. doi: 10.5194/acp-16-1123-2016.
  • Zelenyuk, A., and D. Imre. 2009. Beyond single particle mass spectrometry: Multidimensional characterisation of individual aerosol particles. Int. Rev. Phys. Chem. 28 (2):309–58. doi: 10.1080/01442350903037458.
  • Zelenyuk, A., and D. Imre. 2005. Single particle laser ablation time-of-flight mass spectrometer: An introduction to SPLAT. Aerosol Sci. Technol. 39 (6):554–68. doi: 10.1080/027868291009242.
  • Zelenyuk, A., D. Imre, J. Wilson, Z. Zhang, J. Wang, and K. Mueller. 2015. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software for data visualization and analysis in a geo-spatial context. J. Am. Soc. Mass Spectrom. 26 (2):257–70. doi: 10.1007/s13361-014-1043-4.
  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, et al. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes: Ubiquity and dominance of oxygenated OA. Geophys. Res. Lett. 34 (13):n/a–/a. doi: 10.1029/2007GL029979.
  • Zhang, Y., P. Liu, Y. Han, Y. Li, Q. Chen, M. Kuwata, and S. T. Martin. 2022. Aerosols in Atmospheric Chemistry. In ACS In Focus. Washington, DC, USA: American Chemical Society.
  • Zhao, R., A. K. Y. Lee, R. Soong, A. J. Simpson, and J. P. D. Abbatt. 2013. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP): Potential atmospheric impacts. Atmos. Chem. Phys. 13 (12):5857–72. doi: 10.5194/acp-13-5857-2013.
  • Zhou, W., W. Xu, H. Kim, Q. Zhang, P. Fu, D. R. Worsnop, and Y. Sun. 2020. A review of aerosol chemistry in Asia: Insights from aerosol mass spectrometer measurements. Environ. Sci. Process. Impacts. 22 (8):1616–53. doi: 10.1039/D0EM00212G.
  • Ziemann, P. J. 2003. Formation of alkoxyhydroperoxy aldehydes and cyclic peroxyhemiacetals from reactions of cyclic alkenes with O3 in the presence of alcohols. J. Phys. Chem. A. 107 (12):2048–60. doi: 10.1021/jp022114y.
  • Ziemann, P. J., and R. Atkinson. 2012. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 41 (19):6582–605. doi: 10.1039/c2cs35122f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.