270
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effects of ventilation rate and social distancing on risk of transmission of disease: a numerical study using Eulerian-Lagrangian method

ORCID Icon, , &
Pages 70-90 | Received 07 Jul 2023, Accepted 08 Oct 2023, Published online: 07 Nov 2023

References

  • Ahmadzadeh, M., and M. Shams. 2021. Passenger exposure to respiratory aerosols in a train cabin: Effects of window, injection source, output flow location. Sustain. Cities Soc. 75 (August):103280. doi:10.1016/j.scs.2021.103280.
  • Ai, Z. T., and A. K. Melikov. 2018. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review. Indoor Air. 28 (4):500–24. doi:10.1111/ina.12465.
  • Anfinrud, P., V. Stadnytskyi, C. E. Bax, and A. Bax. 2020. Visualizing Speech-Generated Oral Fluid Droplets with Laser Light Scattering. N Engl. J. Med. 382 (21):2061–3. doi:10.1056/NEJMc2007800.
  • ANSI/ASHRAE 2021a. Chapter 16, Ventilation and infiltration. In ASHRAE Handbook Fundamentals. Atlanta, GA: American Society of Heating, Refrigerating and Air-conditioning Engineers.
  • ANSI/ASHRAE 2021b. Chapter 9, Thermal comfort. In ASHRAE Handbook Fundamentals. Atlanta, GA: American Society of Heating, Refrigerating and Air-conditioning Engineers.
  • Bennett, D. H., T. E. McKone, J. S. Evans, W. W. Nazaroff, M. D. Margni, O. Jolliet, and K. R. Smith. 2002. Defining intake fraction Permalink. Environ. Sci. Technol. 36 (9):206A–11A. doi:10.1021/es0222770.
  • Bu, Y., R. Ooka, H. Kikumoto, and W. Oh. 2021. Recent research on expiratory particles in respiratory viral infection and control strategies: A review. Sustain. Cities Soc. 73:103106. doi:10.1016/j.scs.2021.103106.
  • Calmet, H., K. Inthavong, A. Both, A. Surapaneni, D. Mira, B. Egukitza, and G. Houzeaux. 2021. Large eddy simulation of cough jet dynamics, droplet transport, and inhalability over a ten minute exposure. Phys Fluids (1994) 33 (12):125122. doi:10.1063/5.0072148.
  • Cao, Q., M. Liu, X. Li, C.-H. Lin, D. Wei, S. Ji, T. Zhang, and Q. Chen. 2022. Influencing factors in the simulation of airflow and particle transportation in aircraft cabins by CFD. Build. Environ. 207 (PB):108413. doi:10.1016/j.buildenv.2021.108413.
  • Chao, C. Y. H., M. P. Wan, L. Morawska, G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, Y. Li, X. Xie, et al. 2009. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 40 (2):122–33. doi:10.1016/j.jaerosci.2008.10.003.
  • Chen, F., S. C. M. Yu, and A. C. K. Lai. 2006. Modeling particle distribution and deposition in indoor environments with a new drift–flux model. Atmos. Environ. 40 (2):357–67. doi:10.1016/j.atmosenv.2005.09.044.
  • Cheng, Y. S., M. D. Allen, D. P. Gallegos, H. C. Yeh, and K. Peterson. 1988. Drag force and slip correction of aggregate aerosols. Aerosol Sci. Technol. 8 (3):199–214. doi:10.1080/02786828808959183.
  • Chinn, R. Y. W., and L. Sehulster. 2003. Guidelines for environmental infection control in health-care facilities: Recommendations of CDC and Healthcare Infection Coltrol Practices Advisory Committee (HICPAC). Morb. Mortal. Wkly. Rep. 210–220.
  • COVID-19 Treatment Guidelines Panel 2023. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Bethesda, MD: National Institutes of Health.
  • De Oliveira, P. M., L. C. C. Mesquita, S. Gkantonas, A. Giusti, and E. Mastorakos. 2021. Evolution of spray and aerosol from respiratory releases: Theoretical estimates for insight on viral transmission. Proc. Math. Phys. Eng. Sci. 477 (2245):20200584. doi:10.1098/rspa.2020.0584.
  • Dudalski, N., A. Mohamed, S. Mubareka, R. Bi, C. Zhang, and E. Savory. 2020. Experimental investigation of far-field human cough airflows from healthy and influenza-infected subjects. Indoor Air. 30 (5):966–77. doi:10.1111/ina.12680.
  • Feng, Y., T. Marchal, T. Sperry, and H. Yi. 2020. Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study. J. Aerosol Sci. 147 (April):105585. doi:10.1016/j.jaerosci.2020.105585.
  • Gosman, A. D., and E. Loannides. 1983. Aspects of computer simulation of liquid-fueled combustors. Energy. J. 7 doi: (6):482–90. doi:10.2514/3.62687.
  • Gromke, C., B. Blocken, W. Janssen, B. Merema, T. van Hooff, and H. Timmermans. 2015. CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Build. Environ. 83:11–26. doi:10.1016/j.buildenv.2014.04.022.
  • Gupta, J. K., C. H. Lin, and Q. Chen. 2010. Characterizing exhaled airflow from breathing and talking. Indoor Air. 20 (1):31–9. doi:10.1111/j.1600-0668.2009.00623.x.
  • Gupta, J. K., C. H. Lin, and Q. Chen. 2009. Flow dynamics and characterization of a cough. Indoor Air. 19 (6):517–25. doi:10.1111/j.1600-0668.2009.00619.x.
  • Han, M., R. Ooka, H. Kikumoto, W. Oh, Y. Bu, and S. Hu. 2021a. Measurements of exhaled airflow velocity through human coughs using particle image velocimetry. Build. Environ. 202:108020. doi:10.1016/j.buildenv.2021.108020.
  • Han, M., R. Ooka, H. Kikumoto, W. Oh, Y. Bu, and S. Hu. 2021b. Measurements of exhaled airflow velocity through human coughs using particle image velocimetry (PIV). ASHRAE Topical Conference Proceedings, IAQ 2020: Indoor Environmental Quality Performance Approaches, 1–8.
  • He, Q., J. Niu, N. Gao, T. Zhu, and J. Wu. 2011. CFD study of exhaled droplet transmission between occupants under different ventilation strategies in a typical office room. Build. Environ. 46 (2):397–408. doi:10.1016/j.buildenv.2010.08.003.
  • Ho, C. K. 2021. Modeling airborne pathogen transport and transmission risks of SARS-CoV-2. Appl. Math. Model. 95:297–319. doi:10.1016/j.apm.2021.02.018.
  • Ho, K. F., L. Y. Lin, S. P. Weng, and K. J. Chuang. 2020. Medical mask versus cotton mask for preventing respiratory droplet transmission in micro environments. Sci. Total Environ. 735 (250):139510. doi:10.1016/j.scitotenv.2020.139510.
  • Holmgren, H., B. Bake, A. Olin, and E. Ljungström. 2011. Relation between humidity and size of exhaled particles. J. Aerosol Med. Pulm. Drug Deliv. 24 (5):253–60. doi:10.1089/jamp.2011.0880.
  • Huang, W., K. Wang, C.-T. Hung, K.-M. Chow, D. Tsang, R. W.-M. Lai, R. H. Xu, E.-K. Yeoh, K.-F. Ho, and C. Chen. 2022. Evaluation of SARS-CoV-2 transmission in COVID-19 isolation wards: On-site sampling and numerical analysis. J. Hazard. Mater. 436 (April):129152. doi:10.1016/j.jhazmat.2022.129152.
  • Johnson, G. R., L. Morawska, Z. D. Ristovski, M. Hargreaves, K. Mengersen, C. Y. H. Chao, M. P. Wan, Y. Li, X. Xie, D. Katoshevski, et al. 2011. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42 (12):839–51. doi:10.1016/j.jaerosci.2011.07.009.
  • Kenarkoohi, A., Z. Noorimotlagh, S. Falahi, A. Amarloei, S. A. Mirzaee, I. Pakzad, and E. Bastani. 2020. Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus. Sci. Total Environ. 748:141324. doi:10.1016/j.scitotenv.2020.141324.
  • Kutter, J. S., M. I. Spronken, P. L. Fraaij, R. A. Fouchier, and S. Herfst. 2018. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol. 28:142–51. doi:10.1016/j.coviro.2018.01.001.
  • Kwon, S.-B., J. Park, J. Jang, Y. Cho, D.-S. Park, C. Kim, G.-N. Bae, and A. Jang. 2012. Study on the initial velocity distribution of exhaled air from coughing and speaking. Chemosphere 87 (11):1260–4. doi:10.1016/j.chemosphere.2012.01.032.
  • Leonard, B. P. 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering 19 (1):59–98. doi:10.1016/0045-7825(79)90034-3.
  • Li, X., Y. Shang, Y. Yan, L. Yang, and J. Tu. 2018. Modelling of evaporation of cough droplets in inhomogeneous humidity fields using the multi-component Eulerian-Lagrangian approach. Build. Environ. 128(November 2017)::68–76. doi:10.1016/j.buildenv.2017.11.025.
  • Li, X., Y. Yan, Y. Shang, and J. Tu. 2015. An Eulerian-Eulerian model for particulate matter transport in indoor spaces. Build. Environ. 86 (2015):191–202. doi:10.1016/j.buildenv.2015.01.010.
  • Lin, Z., J. Wang, T. Yao, and T. T. Chow. 2012. Investigation into anti-airborne infection performance of stratum ventilation. Build. Environ. 54:29–38. doi:10.1016/j.buildenv.2012.01.017.
  • Liu, L., Y. Li, P. V. Nielsen, J. Wei, and R. L. Jensen. 2017a. Short-range airborne transmission of expiratory droplets between two people. Indoor Air. 27 (2):452–62. doi:10.1111/ina.12314.
  • Liu, L., J. Wei, Y. Li, and A. Ooi. 2017b. Evaporation and dispersion of respiratory droplets from coughing. Indoor Air. 27 (1):179–90. doi:10.1111/ina.12297.
  • Liu, Z., D. Yin, Y. Niu, G. Cao, H. Liu, and L. Wang. 2022. Effect of human thermal plume and ventilation interaction on bacteria-carrying particles diffusion in operating room microenvironment. Energy Build. 254:111573. doi:10.1016/j.enbuild.2021.111573.
  • Mariam, M. A., Joshi, M., Rajagopal, P. S., Khan, A., Rao, M. M., and Sapra, B. K. (2021). CFD simulation of the airborne transmission of COVID-19 vectors emitted during respiratory mechanisms: revisiting the concept of safe distance. ACS Omega 6 (26):16876–16889. doi:10.1021/acsomega.1c01489.
  • Massarotti, N., A. Mauro, S. Mohamed, and M. R. Romano. 2021. Air contamination inside an actual operating room due to ultrafine particles: An experimental-numerical thermo-fluid dynamic study. Atmos. Environ. 249(June 2020)::118155. doi:10.1016/j.atmosenv.2020.118155.
  • Montazeri, H., B. Blocken, and J. L. M. Hensen. 2015. Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis. Build. Environ. 83:129–41. doi:10.1016/j.buildenv.2014.03.022.
  • Montazeri, H., Y. Toparlar, B. Blocken, and J. L. M. Hensen. 2017. Simulating the cooling effects of water spray systems in urban landscapes: A computational fluid dynamics study in Rotterdam, The Netherlands. Landscape Urban Plann. 159:85–100. doi:10.1016/j.landurbplan.2016.10.001.
  • Mui, K. W., L. T. Wong, C. L. Wu, and A. C. K. Lai. 2009. Numerical modeling of exhaled droplet nuclei dispersion and mixing in indoor environments. J. Hazard. Mater. 167 (1-3):736–44. doi:10.1016/j.jhazmat.2009.01.041.
  • Murakami, S. 2004. Analysis and design of micro-climate around the human body with respiration by CFD. Indoor Air. 14 Suppl 7 (s7):144–56. doi:10.1111/j.1600-0668.2004.00283.x.
  • Murakami, S., S. Kato, and J. Zeng. 2000. Combined simulation of airflow, radiation and moisture transport for heat release from a human body. Build. Environ. 35 (6):489–500. doi:10.1016/S0360-1323(99)00033-5.
  • Nicas, M., W. W. Nazaroff, and A. Hubbard. 2005. Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens. J. Occup. Environ. Hyg. 2 (3):143–54. doi:10.1080/15459620590918466.
  • Nielsen, P. V. 2004. Computational fluid dynamics and room air movement. Indoor Air. 14 Suppl 7 (s7):134–43. doi:10.1111/j.1600-0668.2004.00282.x.
  • Nishimura, H., S. Sakata, and A. Kaga. 2013. A new methodology for studying dynamics of aerosol particles in sneeze and cough using a digital high-vision, high-speed video system and vector analyses. PLoS One. 8 (11):e80244. doi:10.1371/journal.pone.0080244.
  • Oh, W., and S. Kato. 2018. The effect of airspeed and wind direction on human’s thermal conditions and air distribution around the body. Build. Environ. 141 (March):103–16. doi:10.1016/j.buildenv.2018.05.052.
  • Oh, W., R. Ooka, H. Kikumoto, and M. Han. 2022a. Numerical modeling of cough airflow: Establishment of spatial–temporal experimental dataset and CFD simulation method. Build. Environ. 207 (October):108531. doi:10.1016/j.buildenv.2021.108531.
  • Oh, W., R. Ooka, H. Kikumoto, and M. Han. 2022b. Numerical modeling of sneeze airflow and its validation with an experimental dataset. Indoor Air. 32 (11):e13171. doi:10.1111/ina.13171.
  • Oh, W., R. Ooka, H. Kikumoto, and M. Han. 2021. Numerical analysis of airflow dynamics generated by human coughing based on PIV experimental results. ASHRAE Topical Conference Proceedings, IAQ 2020: Indoor Environmental Quality Performance Approaches, 1–9.
  • Oh, W., R. Ooka, H. Kikumoto, and S. Lee. 2022c. Numerical investigation of the transmission route of infectious particles produced by human. in CLIMA 2022, The 14th REHVA HVAC World Congress, 1–8.
  • Olmedo, I., P. V. Nielsen, M. Ruiz de Adana, R. L. Jensen, and P. Grzelecki. 2012. Distribution of exhaled contaminants and personal exposure in a room using three different air distribution strategies. Indoor Air. 22 (1):64–76. doi:10.1111/j.1600-0668.2011.00736.x.
  • Pan, J., C. Harb, W. Leng, and L. C. Marr. 2021. Inward and outward effectiveness of cloth masks, a surgical mask, and a face shield. Aerosol Sci. Technol. 55 (6):718–33. doi:10.1080/02786826.2021.1890687.
  • Park, S. Y., Y.-M. Kim, S. Yi, S. Lee, B.-J. Na, C. B. Kim, J. Kim, H. S. Kim, Y. B. Kim, Y. Park, et al. 2020. Coronavirus Disease Outbreak in Call Center, South Korea. Emerg. Infect. Dis. 26 (8):1666–70. doi:10.3201/eid2608.201274.
  • Pei, G., M. Taylor, and D. Rim. 2021. Human exposure to respiratory aerosols in a ventilated room: Effects of ventilation condition, emission mode, and social distancing. Sustainable Cities and Society 73 (May):103090. doi:10.1016/j.scs.2021.103090.
  • Qian, H., and Y. Li. 2010. Removal of exhaled particles by ventilation and deposition in a multibed airborne infection isolation room. Indoor Air. 20 (4):284–97. doi:10.1111/j.1600-0668.2010.00653.x.
  • Razzini, K., M. Castrica, L. Menchetti, L. Maggi, L. Negroni, N. V. Orfeo, A. Pizzoccheri, M. Stocco, S. Muttini, and C. M. Balzaretti. 2020. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci. Total Environ. 742:140540. doi:10.1016/j.scitotenv.2020.140540.
  • Rezaei, M., and R. R. Netz. 2021. Airborne virus transmission via respiratory droplets: Effects of droplet evaporation and sedimentation. Curr. Opin. Colloid Interface Sci. 55:101471. doi:10.1016/j.cocis.2021.101471.
  • Schiller, L., and A. Naumann. 1933. Über die grundlegenden berechnungen bei der schwerkraftaufbereitung. Zeitschrift Des Vereines Deutscher Ingenieure. 77:318–21.
  • Schoen, L. J. 2020. Guidance for building operations during the COVID-19 pandemic. ASHRAE Journal 62 (5):72–4.
  • Shih, T.-H., W. W. Liou, A. Shabbir, Z. Yang, and J. Zhu. 1995. A new k-ϵ eddy viscosity model for high Reynolds number turbulent flows. Compurers Fluids 24 (3):227–38. doi:10.1016/0045-7930(94)00032-T.
  • Srinivasan, A., J. Krishan, S. Bathula, and Y. S. Mayya. 2021. Modeling the viral load dependence of residence times of virus-laden droplets from COVID-19-infected subjects in indoor environments. Indoor Air. 31 (6):1786–97. doi:10.1111/ina.12868.
  • Ugarte-Anero, A., U. Fernandez-Gamiz, I. Aramendia, E. Zulueta, and J. M. Lopez-Guede. 2021. Numerical Modeling of Face Shield Protection against a Sneeze. Mathematics 9 (13):1582. doi:10.3390/math9131582.
  • van Hooff, T., and B. Blocken. 2010. Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium. Environ. Modell. Software 25 (1):51–65. doi:10.1016/j.envsoft.2009.07.008.
  • Verma, S., M. Dhanak, and J. Frankenfield. 2020. Visualizing droplet dispersal for face shields and masks with exhalation valves. Phys Fluids (1994) 32 (9):091701. doi:10.1063/5.0022968.
  • Versteeg, H. K., and W. Malalasekera. 2007. An Introduction to Computational Fluid Dynamics. Harlow, Essex: Pearson education.
  • Visone, M., M. Lanzetta, M. Lappa, C. Lanzaro, and L. Polizio. 2021. Three-dimensional simulation of clouds of multi-disperse evaporating saliva droplets in a train cabin. Phys Fluids (1994) 33 (8):083318. doi:10.1063/5.0059649.
  • Walker, J. S., Archer, J. Gregson, F. K. A., Michel, S. E. S., Bzdek, B. R, and Reid, J. P. 2021. Accurate Representations of the Microphysical Processes Occurring during the Transport of Exhaled Aerosols and Droplets. ACS Cent. Sci. 7 (1):200–9. doi:10.1021/acscentsci.0c01522.
  • Wan, M. P., C. Y. H. Chao, Y. D. Ng, G. N. Sze To, and W. C. Yu. 2007. Dispersion of expiratory droplets in a general hospital ward with ceiling mixing type mechanical ventilation system. Aerosol Sci. Technol. 41 (3):244–58. doi:10.1080/02786820601146985.
  • Wilson, J., S. Miller, and D. Mukherjee. 2021. A Lagrangian Approach Towards Quantitative Analysis of Flow-mediated Infection Transmission in Indoor Spaces with Application to SARS-COV-2. International Journal of Computational Fluid Dynamics 35 (9):727–42. doi:10.1080/10618562.2021.1991328.
  • Xiaoping, L., N. Jianlei, and G. Naiping. 2011. Spatial distribution of human respiratory droplet residuals and exposure risk for the co-occupant under different ventilation methods. HVAC and R Research 17 (4):432–45. doi:10.1080/10789669.2011.578699.
  • Xie, X., Y. Li, H. Sun, and L. Liu. 2009. Exhaled droplets due to talking and coughing. J. R Soc. Interface 6 (suppl_6):S703–S714. doi:10.1098/rsif.2009.0388.focus.
  • Yan, Y., X. Li, and J. Tu. 2019. Thermal effect of human body on cough droplets evaporation and dispersion in an enclosed space. Build. Environ. 148(November 2018)::96–106. doi:10.1016/j.buildenv.2018.10.039.
  • Yang, X., C. Ou, H. Yang, L. Liu, T. Song, M. Kang, H. Lin, and J. Hang. 2020. Transmission of pathogen-laden expiratory droplets in a coach bus. J. Hazard. Mater. 397 (February):122609. doi:10.1016/j.jhazmat.2020.122609.
  • Yeoh, G. H., and J. Tu. 2010. Computational techniques for multi-phase flows. Oxford, UK: Butterworth-Heinemann.
  • Yu, I. T. S., Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. W. Lee, D. Y. C. Leung, and T. Ho. 2004. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl. J. Med. 350 (17):1731–9. doi:10.1056/NEJMoa032867.
  • Zhang, L., and Y. Li. 2012. Dispersion of coughed droplets in a fully-occupied high-speed rail cabin. Build. Environ. 47 (1):58–66. doi:10.1016/j.buildenv.2011.03.015.
  • Zhang, N., P. Wang, T. Miao, P. T. Chan, W. Jia, P. Zhao, B. Su, X. Chen, and Y. Li. 2021. Real human surface touch behavior based quantitative analysis on infection spread via fomite route in an office. Build. Environ. 191(October 2020)::107578. doi:10.1016/j.buildenv.2020.107578.
  • Zhao, B., and J. Wu. 2009. Effect of particle spatial distribution on particle deposition in ventilation rooms. J. Hazard. Mater. 170 (1):449–56. doi:10.1016/j.jhazmat.2009.04.079.
  • Zhu, S., S. Kato, and J.-H. Yang. 2006. Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Build. Environ. 41 (12):1691–702. doi:10.1016/j.buildenv.2005.06.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.