132
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Electrospray synthesis and in-situ sizing of nanoparticulate CsH2PO4

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 99-113 | Received 27 Aug 2023, Accepted 29 Oct 2023, Published online: 27 Nov 2023

References

  • Adamson, A. W., and A. P. Gast. 1997. Physical chemistry of surfaces. New York: John Wiley & Sons, Inc.
  • Ageev, I. M., and Y. M. Rybin. 2020. Features of measuring the electrical conductivity of distilled water in contact with air. Meas. Tech. 62 (10):923–7. doi: 10.1007/s11018-020-01714-2.
  • Arumugham-Achari, A. K., J. Grifoll, and J. Rosell-Llompart. 2015. A comprehensive framework for the numerical simulation of evaporating electrosprays. Aerosol Sci. Technol. 49 (6):436–48. doi: 10.1080/02786826.2015.1039639.
  • Bertling, J., J. Blomer, and R. Kummel. 2004. Hollow microspheres. Chem. Eng. Technol. 27 (8):829–37. doi: 10.1002/ceat.200406138.
  • Borra, J. P., Y. Tombette, and P. Ehouarn. 1999. Influence of electric field profile and polarity on the mode of ehda related to electric discharge regimes. J. Aerosol Sci. 30 (7):913–25. doi: 10.1016/S0021-8502(98)00779-4.
  • Boysen, D. A., T. Uda, C. R. I. Chisholm, and S. M. Haile. 2004. High-performance solid acid fuel cells through humidity stabilization. Science 303 (5654):68–70. doi: 10.1126/Science.1090920.
  • Camata, R. P. 1998. Aerosol synthesis and characterization of silicon nanocrystals. Pasadena, CA: California Institute of Technology.
  • Chen, D., D. Pui, and S. Kaufman. 1995. Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 um diamater range. J. Aerosol Sci. 26 (6):963–77. doi. doi: 10.1016/0021-8502(95)00027-A.
  • Chisholm, C. R. I., D. A. Boysen, A. B. Papandrew, S. Zezevic, S. Cha, K. Sasaki, A. Varga, K. P. Giapis, and S. M. Haile. 2009. From laboratory curiosities to technological realization: The development path for solid acid fuel cells. Electrochem. Soc. Interface 18 (3):53–9. doi: 10.1149/2.F06093IF.
  • Cloupeau, M., and B. Prunet-Foch. 1989. Electrostatic spraying of liquids in cone-jet mode. J Electrostat. 22 (2):135–59. doi: 10.1016/0304-3886(89)90081-8.
  • Cloupeau, M., and B. Prunet-Foch. 1990. Electrostatic spraying of liquids - main functioning modes. J. Electrostat. 25 (2):165–84. doi: 10.1016/0304-3886(90)90025-Q.
  • Cloupeau, M., and B. Prunet-Foch. 1994. Electrohydrodynamic spraying functioning modes - a critical-review. J. Aerosol Sci. 25 (6):1021–36. doi: 10.1016/0021-8502(94)90199-6.
  • Dole, M., L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, and M. B. Alice. 1968. Molecular beams of macroions. J. Chem. Phys. 49 (5):2240–9. doi: 10.1063/1.1670391.
  • Duft, D., T. Achtzehn, R. Müller, B. A. Huber, and T. Leisner. 2003. Rayleigh jets from levitated microdroplets. Nature 421 (6919):128. doi: 10.1038/421128a.
  • Evoen, V. 2016. Electrocatalysis in solid acid fuel cell electrodes. Pasadena, CA: California Institute of Technology.
  • Flagan, R. C. 1999. On differential mobility analyzer resolution. Aerosol Sci. Technol. 30 (6):556–70. doi: 10.1080/027868299304417.
  • Flagan, R. C. 2014. Continuous-flow differential mobility analysis of nanoparticles and biomolecules. In Annual review of chemical and biomolecular engineering, vol. 5, eds. J. M. Prausnitz, M. F. Doherty, and R. A. Segalman, 255–79. Palo Alto: Annual Reviews. doi: 10.1146/annurev-chembioeng-061312-103316.
  • Fu, H., A. C. Patel, M. J. Holtzman, and D. R. Chen. 2011. A new electrospray aerosol generator with high particle transmission efficiency. Aerosol Sci. Technol. 45 (10):1176–83. doi: 10.1080/02786826.2011.582899.
  • Gañán-Calvo, A. M. 2004. On the general scaling theory for electrospraying. J. Fluid Mech. 507:203–12.
  • Gañán-Calvo, A. M., J. C. Lasheras, J. Dávila, and A. Barrero. 1994. The electrostatic spray emitted from an electrified conical meniscus. J. Aerosol Sci. 25 (6):1121–42. doi: 10.1016/0021-8502(94)90205-4.
  • Gañán-Calvo, A., J. Davila, and A. Barrero. 1997. Current and doplet size in the electrospraying of liquids scaling laws. J. Aerosol Sci. 28 (2):249–75. doi: 10.1016/S0021-8502(96)00433-8.
  • Gomez, A., and K. Tang. 1994. Charge and fission of droplets in electrostatic sprays. Phys. Fluids 6 (1):404–14. doi: 10.1063/1.868037.
  • Gu, W., P. E. Heil, H. Choi, and K. Kim. 2007. Comprehensive model for fine coulomb fission of liquid droplets charged to rayleigh limit. Appl. Phys. Lett. 91 (6):064104. doi: 10.1063/1.2767774.
  • Haile, S. M., C. R. I. Chisholm, K. Sasaki, D. A. Boysen, and T. Uda. 2007. Solid acid proton conductors: From laboratory curiosities to fuel cell electrolytes. Faraday Discuss. 134:17–39. doi: 10.1039/b604311a.
  • Hanozin, E., C. C. Harper, M. S. McPartlan, and E. R. Williams. 2023. Dynamics of rayleigh fission processes in ∼100 nm charged aqueous nanodrops. ACS Cent. Sci. 9 (8):1611–22. doi: 10.1021/acscentsci.3c00323.
  • Hogan, C. J., P. Biswas, and D. R. Chen. 2009. Charged droplet dynamics in the submicrometer size range. J. Phys. Chem. B. 113 (4):970–6. doi: 10.1021/jp807765n.
  • Hartman, R. P. A., J. P. Borra, D. J. Brunner, J. C. M. Marijnissen, and B. Scarlett. 1999. The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. J. Electrostat. 47 (3):143–70. doi: 10.1016/s0304-3886(99)00034-0.
  • Hartman, R., D. Brunner, D. Camelot, J. Marijnissen, and B. Scarlett. 2000. Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J. Aerosol Sci. 31 (1):65–95. doi. doi: 10.1016/S0021-8502(99)00034-8.
  • Hoppel, W. A., and G. M. Frick. 1986. Ion—aerosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. Aerosol Sci. Technol. 5 (1):1–21. doi: 10.1080/02786828608959073.
  • Hunter, H. C., and A. K. Ray. 2009. On progeny droplets emitted during coulombic fission of charged microdrops. Phys. Chem. Chem. Phys. 11 (29):6156–65. doi: 10.1039/B820457H.
  • Jaworek, A., and A. Krupa. 1999. Classification of the modes of ehd spraying. J. Aerosol Sci. 30 (7):873–93. doi. doi: 10.1016/S0021-8502(98)00787-3.
  • Ji, J. H., G. N. Bae, and J. Hwang. 2004. Characteristics of aerosol charge neutralizers for highly charged particles. J. Aerosol Sci. 35 (11):1347–58. doi: 10.1016/j.jaerosci.2004.04.008.
  • Jones, F. E., and G. L. Harris. 1992. Its-90 density of water formulation for volumetric standards calibration. J. Res. Natl. Inst. Stand. Technol. 97 (3):335–40. doi: 10.6028/jres.097.013.
  • Kaufman, S. L., J. W. Skogen, F. D. Dorman, F. Zarrin, and K. C. Lewis. 1996. Macromolecule analysis based on electrophoretic mobility in air: Globular proteins. Anal. Chem. 68 (11):1895–904. doi: 10.1021/ac951128f.
  • Lim, D. K., J. Liu, S. A. Pandey, H. Paik, C. R. I. Chisholm, J. T. Hupp, and S. M. Haile. 2018. Atomic layer deposition of pt@csh2po4 for the cathodes of solid acid fuel cells. Electrochim. Acta 288:12–9. doi: 10.1016/j.electacta.2018.07.076.
  • Liu, B. Y., and K. W. Lee. 1975. An aerosol generator of high stability. Am. Ind. Hyg. Assoc. J. 36 (12):861–5. doi. doi: 10.1080/0002889758507357.
  • Louie, M. W., K. Sasaki, and S. M. Haile. 2008. Towards understanding electrocatalysis in cdp based fuel cells pt and pd thin film electrodes. ECS Trans. 13 (28):57–62. doi: 10.1149/1.3055406.
  • Malmberg, C. G., and A. A. Maryott. 1956. Dielectric constant of water from 0-degrees to 100-degrees-c. J. Res. Natl. Bur. Stan. 56 (1):1–8. doi: 10.6028/jres.056.001.
  • Merrill, M. H., W. R. Pogue, and J. N. Baucom. 2015. Electrospray ionization of polymers: Evaporation, drop fission, and deposited particle morphology. J. Micro Nano-Manuf. 3:7. doi: 10.1115/1.4028505.
  • Messing, G. L., S. C. Zhang, and G. V. Jayanthi. 1993. Ceramic powder synthesis by spray-pyrolysis. J. Am. Ceramic Soc. 76 (11):2707–26. doi: 10.1111/j.1151-2916.1993.tb04007.x.
  • Pantano, C., A. Ganan-Calvo, and A. Barrero. 1994. Zeroth-order electrohydrostatic solution for electrospraying in cone-jet mode. J. Aerosol Sci. 25 (6):1065–77. doi. doi: 10.1016/0021-8502(94)90202-X.
  • Papandrew, A. B., C. R. I. Chisholm, R. A. Elgammal, M. M. Ozer, and S. K. Zecevic. 2011. Advanced electrodes for solid acid fuel cells by platinum deposition on csh2po4. Chem. Mater. 23 (7):1659–67. doi: 10.1021/cm101147y.
  • Papandrew, A. B., R. W. Atkinson Iii, R. R. Unocic, and T. A. Zawodzinski. 2015. Ruthenium as a co-tolerant hydrogen oxidation catalyst for solid acid fuel cells. J. Mater. Chem. A 3 (7):3984–7. doi: 10.1039/C4TA06451H.
  • Patek, J., M. Souckova, and J. Klomfar. 2016. Generation of recommendable values for the surface tension of water using a nonparametric regression. J. Chem. Eng. Data 61 (2):928–35. doi: 10.1021/acs.jced.5b00776.
  • Radacsi, N., F. D. Campos, C. R. I. Chisholm, and K. P. Giapis. 2018. Spontaneous formation of nanoparticles on electrospun nanofibres. Nat. Commun. 9 (1):4740. doi: 10.1038/s41467-018-07243-5.
  • Rashkovich, L. N. 1991. Kdp-family single crystals. Bristol, England: Adam Hilger.
  • Rulison, A. J., and R. C. Flagan. 1994. Synthesis of yttria powders by electrospray pyrolysis. J. Am. Ceramic Soc. 77 (12):3244–50. doi: 10.1111/j.1151-2916.1994.tb04577.x.
  • Smith, J. N., R. Flagan, and J. Beauchamp. 2002. Droplet evaporation and discharge dynamics in electrospray ionization. J. Phys. Chem. A 106 (42):9957–67. doi: 10.1021/jp025723e.
  • Stolzenburg, M. R., and P. H. McMurry. 2008. Equations governing single and tandem dma configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 42 (6):421–32. doi: 10.1080/02786820802157823.
  • Suryaprakash, R. C., F. P. Lohmann, M. Wagner, B. Abel, and Á. Varga. 2014. Spray drying as a novel and scalable fabrication method for nanostructured csh2po4, pt-thin-film composite electrodes for solid acid fuel cells. RSC Adv. 4 (104):60429–36. doi: 10.1039/C4RA10259B.
  • Uda, T., and S. M. Haile. 2005. Thin-membrane solid-acid fuel cell. Electrochem. Solid-State Lett. 8 (5):A245–A246. doi: 10.1149/1.1883874.
  • Uda, T., D. A. Boysen, C. R. I. Chisholm, and S. M. Haile. 2006. Alcohol fuel cells at optimal temperatures. Electrochem. Solid-State Lett. 9 (6):A261–A264. doi: 10.1149/1.2188069.
  • Varga, Á. 2013. Advancing electrocatalysis in solid acid fuel cell electrodes. Pasadena, CA: California Institute of Technology.
  • Varga, Á., N. A. Brunelli, M. W. Louie, K. P. Giapis, and S. M. Haile. 2010. Composite nanostructured solid-acid fuel-cell electrodes via electrospray deposition. J. Mater. Chem. 20 (30):6309–15. doi: 10.1039/C0jm00216j.
  • Wang, F., M. Elbadawi, S. L. Tsilova, S. Gaisford, A. W. Basit, and M. Parhizkar. 2022. Machine learning predicts electrospray particle size. Materials & Design 219:110735. doi: 10.1016/j.matdes.2022.110735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.