185
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Insights into the potential pathogenic bacteria and their interactions with meteorology and atmospheric pollution conditions examined during summer and winter in Xi’an, China

, , , , &
Pages 26-38 | Received 26 Apr 2023, Accepted 09 Nov 2023, Published online: 01 Dec 2023

References

  • Abd Aziz, A., K. Lee, B. Park, H. Park, K. Park, I.-G. Choi, and I. S. Chang. 2018. Comparative study of the airborne microbial communities and their functional composition in fine particulate matter (PM2.5) under non-extreme and extreme PM2.5 conditions. Atmos. Environ. 194:82–92. doi: 10.1016/j.atmosenv.2018.09.027.
  • Adhikari, A., T. Reponen, S. A. Grinshpun, D. Martuzevicius, and G. LeMasters. 2006. Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environ. Pollut. 140 (1):16–28. doi: 10.1016/j.envpol.2005.07.004.
  • Ariya, P. A., and M. Amyot. 2004. New directions: The role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 38 (8):1231–2. doi: 10.1016/j.atmosenv.2003.12.006.
  • Bagheri, M., A. Khodabakhshi, G. R. Mobini, M. Bagheri, M. Validi, A. Ahmadi, M. Farhadkhani, S. Hemati, and F. Mohammadi-Moghadam. 2021. Identification and seasonal distribution of ambient bioaerosols and associated meteorological factors in shahrekord, iran. J. Mazandaran Univ. Med. Sci. 31:53–65.
  • Bokulich, N. A., B. D. Kaehler, J. R. Rideout, M. Dillon, E. Bolyen, R. Knight, G. A. Huttley, and J. Gregory Caporaso. 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 6 (1):90. doi: 10.1186/s40168-018-0470-z.
  • Bongomin, F., S. Gago, R. O. Oladele, and D. W. Denning. 2017. Global and multi-national prevalence of fungal diseases—estimate precision. JoF. 3 (4):57. doi: 10.3390/jof3040057.
  • Bowers, R. M., N. Clements, J. B. Emerson, C. Wiedinmyer, M. P. Hannigan, and N. Fierer. 2013. Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ. Sci. Technol. 47 (21):12097–106. doi: 10.1021/es402970s.
  • Bowers, R. M., I. B. McCubbin, A. G. Hallar, and N. Fierer. 2012. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 50:41–9. doi: 10.1016/j.atmosenv.2012.01.005.
  • Brown, R. M., D. A. Larson, and H. C. Bold. 1964. Airborne algae: their abundance and heterogeneity. Science 143 (3606):583–5. doi: 10.1126/science.143.3606.583.
  • Cáliz, J., X. Triadó-Margarit, L. Camarero, and E. O. Casamayor. 2018. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. U S A 115 (48):12229–34. doi: 10.1073/pnas.1812826115.
  • Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13 (7):581–3. doi: 10.1038/nmeth.3869.
  • Cao, C., W. Jiang, B. Wang, J. Fang, J. Lang, G. Tian, J. Jiang, and T. F. Zhu. 2014. Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 48 (3):1499–507. doi: 10.1021/es4048472.
  • Castillo, J. A., S. J. R. Staton, T. J. Taylor, P. Herckes, and M. A. Hayes. 2012. Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique. Anal. Bioanal. Chem. 403 (1):15–26. doi: 10.1007/s00216-012-5725-0.
  • CDC. 2019. Pseudomonas aeruginosa in healthcare settings.
  • Chen, H., R. Du, Y. Zhang, P. Du, S. Zhang, W. Ren, and M. Yang. 2021a. Evolution of PM2.5 bacterial community structure in Beijing’s suburban atmosphere. Sci. Total Environ. 799:149387. doi: 10.1016/j.scitotenv.2021.149387.
  • Chen, H., R. Du, Y. Zhang, S. Zhang, W. Ren, and P. Du. 2021b. Survey of background microbial index in inhalable particles in Beijing. Sci. Total Environ. 757:143743. doi: 10.1016/j.scitotenv.2020.143743.
  • CNEMC 2020. China National Enviriomental Monitoring Centre.
  • Cui, X., S. Gu, X. Zhao, J. Wu, T. Kato, and Y. Tang. 2008. Diurnal and seasonal variations of UV radiation on the northern edge of the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 148 (1):144–51. doi: 10.1016/j.agrformet.2007.09.008.
  • de Oliveira Ferreira, E., E. Yates, M. Jourlin, J. Liu, R. M. Pilotto Domingues, and M. Goldner. 2011. Anaerobe/aerobe environmental flux determines protein expression profiles of Bacteroides fragilis, a redox pathogen. Anaerobe 17 (1):4–14. doi: 10.1016/j.anaerobe.2010.09.004.
  • Douwes, J., P. Thorne, N. Pearce, and D. Heederik. 2003. Bioaerosol health effects and exposure assessment: progress and prospects. Ann. Occup. Hyg. 47 (3):187–200.
  • Du, P., R. Du, W. Ren, Z. Lu, and P. Fu. 2018. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 610-611:308–15. doi: 10.1016/j.scitotenv.2017.07.097.
  • Dupont, C., A. L. Michon, M. Normandin, G. Salom, M. Latypov, R. Chiron, and H. Marchandin. 2020. Streptococcus pseudopneumoniae, an opportunistic pathogen in patients with cystic fibrosis. J Cyst Fibros. 19 (4):e28–e31. doi: 10.1016/j.jcf.2019.11.004.
  • Estillore, A. D., J. V. Trueblood, and V. H. Grassian. 2016. Atmospheric chemistry of bioaerosols: Heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 7 (11):6604–16. doi: 10.1039/C6SC02353C.
  • Fan, C., Y. Li, P. Liu, F. Mu, Z. Xie, R. Lu, Y. Qi, B. Wang, and C. Jin. 2019. Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi’an, China. Sci Total Environ. 672:834–45. doi: 10.1016/j.scitotenv.2019.03.412.
  • Fang, Z., Z. Ouyang, H. Zheng, X. Wang, and L. Hu. 2007. Culturable airborne bacteria in outdoor environments in Beijing, China. Microb. Ecol. 54 (3):487–96. doi: 10.1007/s00248-007-9216-3.
  • Feller, W. 1968. An introduction to probability theory and its applications. New York: Wiley.
  • Fennelly, K. P. 2020. Particle sizes of infectious aerosols: Implications for infection control. Lancet Respirator. Med. 8 (9):914–24. doi: 10.1016/S2213-2600(20)30323-4.
  • Gajdács, M., A. Németh, M. Knausz, I. Barrak, A. Stájer, G. Mestyán, S. Melegh, A. Nyul, Á. Tóth, Z. Ágoston, et al. 2020. Streptococcus suis: An underestimated emerging pathogen in Hungary? Microorganisms 8 8 (9):1292. doi: 10.3390/microorganisms8091292.
  • George, C., M. Ammann, B. D’Anna, D. J. Donaldson, and S. A. Nizkorodov. 2015. Heterogeneous photochemistry in the atmosphere. Chem. Rev. 115 (10):4218–58. doi: 10.1021/cr500648z.
  • Gong, J., J. Qi, B. E, Y. Yin, and D. Gao. 2020. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environ. Pollut. 257:113485. doi: 10.1016/j.envpol.2019.113485.
  • Griffin, D. W., C. A. Kellogg, V. H. Garrison, J. T. Lisle, T. C. Borden, and E. A. Shinn. 2003. Atmospheric microbiology in the northern Caribbean during African dust events. Aerobiologia 19 (3/4):143–57. doi: 10.1023/B:AERO.0000006530.32845.8d.
  • Gusareva, E. S., E. Acerbi, K. J. X. Lau, I. Luhung, B. N. V. Premkrishnan, S. Kolundžija, R. W. Purbojati, A. Wong, J. N. I. Houghton, D. Miller, et al. 2019. Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proc. Natl. Acad. Sci. USA. 116 (46):23299–308. doi: 10.1073/pnas.1908493116.
  • Hanni, K. D., J. A. Mazet, F. M. Gulland, J. Estes, M. Staedler, M. J. Murray, M. Miller, and D. A. Jessup. 2003. Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters. J. Wildl. Dis. 39 (4):837–50.
  • Hirsch, P., C. A. Gallikowski, J. Siebert, K. Peissl, R. Kroppenstedt, P. Schumann, E. Stackebrandt, and R. Anderson. 2004. Deinococcus frigens sp. nov. Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst. Appl. Microbiol. 27:636–45.
  • Hu, Z., H. Liu, H. Zhang, X. Zhang, M. Zhou, L. Lou, P. Zheng, C. Xi, and B. Hu. 2020. Temporal discrepancy of airborne total bacteria and pathogenic bacteria between day and night. Environ Res. 186:109540. doi: 10.1016/j.envres.2020.109540.
  • Huang, S., Y. Luo, X. Wang, T. Zhang, Y. Lei, Y. Zeng, J. Sun, H. Che, H. Xu, J. Cao, et al. 2022. Optical properties, chemical functional group, and oxidative activity of different polarity levels of water-soluble organic matter in PM2.5 from biomass and coal combustion in rural areas in Northwest China. Atmos. Environ. 283:119179. doi: 10.1016/j.atmosenv.2022.119179.
  • Innocente, E., S. Squizzato, F. Visin, C. Facca, G. Rampazzo, V. Bertolini, I. Gandolfi, A. Franzetti, R. Ambrosini, and G. Bestetti. 2017. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy. Sci. Total Environ. 593-594:677–87. doi: 10.1016/j.scitotenv.2017.03.199.
  • Jiang, S., B. Sun, R. Zhu, C. Che, D. Ma, R. Wang, and H. Dai. 2022a. Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. Sci. Total Environ. 831:154665. doi: 10.1016/j.scitotenv.2022.154665.
  • Jiang, X., C. Wang, J. Guo, J. Hou, X. Guo, H. Zhang, J. Tan, M. Li, X. Li, and H. Zhu. 2022b. Global meta-analysis of airborne bacterial communities and associations with anthropogenic activities. Environ. Sci. Technol. 56 (14):9891–902. doi: 10.1021/acs.est.1c07923.
  • Joly-Guillou, M. L. 2005. Clinical impact and pathogenicity of acinetobacter. Clin. Microbiol. Infect. 11 (11):868–73. doi: 10.1111/j.1469-0691.2005.01227.x.
  • Jones, A. M., and R. M. Harrison. 2004. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci. Total Environ. 326 (1-3):151–80.
  • Katoh, K., K. Misawa, K. I. Kuma, and T. Miyata. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid. Res. 30 (14):3059–66. doi: 10.1093/nar/gkf436.
  • Kembel, S. W., E. Jones, J. Kline, D. Northcutt, J. Stenson, A. M. Womack, B. J. M. Bohannan, G. Z. Brown, and J. L. Green. 2012. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 6 (8):1469–79. doi: 10.1038/ismej.2011.211.
  • Kõljalg, U., R. H. Nilsson, K. Abarenkov, L. Tedersoo, A. F. S. Taylor, M. Bahram, S. T. Bates, T. D. Bruns, J. Bengtsson-Palme, T. M. Callaghan, et al. 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22 (21):5271–7. doi: 10.1111/mec.12481.
  • Leung, M. A.-O., D. Wilkins, E. K. Li, F. K. Kong, and P. K. Lee. 2004. Indoor-air microbiome in an urban subway network: Diversity and dynamics.
  • Li, Y., H. Fu, W. Wang, J. Liu, Q. Meng, and W. Wang. 2015. Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi’an, China. Atmos. Environ. 122:439–47. doi: 10.1016/j.atmosenv.2015.09.070.
  • Li, Y., R. Lu, W. Li, Z. Xie, and Y. Song. 2017. Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China. J. Aerosol Sci. 106:83–92. doi: 10.1016/j.jaerosci.2017.01.007.
  • Liu, H., X. Zhang, H. Zhang, X. Yao, M. Zhou, J. Wang, Z. He, H. Zhang, L. Lou, W. Mao, et al. 2018. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environ. Pollut. 233:483–93. doi: 10.1016/j.envpol.2017.10.070.
  • Li, J., S. Zuraimi, S. Schiavon, M. P. Wan, J. Xiong, and K. W. Tham. 2022. Diurnal trends of indoor and outdoor fluorescent biological aerosol particles in a tropical urban area. Sci. Total Environ. 848:157811. doi: 10.1016/j.scitotenv.2022.157811.
  • Ma, L., S. D. Yabo, L. Lu, J. Jiang, F. Meng, and H. Qi. 2023. Seasonal variation characteristics of inhalable bacteria in bioaerosols and antibiotic resistance genes in Harbin. J. Hazard. Mater. 446:130597.
  • Madhwal, S., V. Prabhu, S. Sundriyal, and V. Shridhar. 2020. Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. Environ. Monit. Assess. 192 (3):196. doi: 10.1007/s10661-020-8158-9.
  • Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17 (1):10–2. doi: 10.14806/ej.17.1.200.
  • Moradigaravand, D., C. J. Boinett, V. Martin, S. J. Peacock, and J. Parkhill. 2016. Recent independent emergence of multiple multidrug-resistant Serratia marcescens clones within the United Kingdom and Ireland. Genome Res. 26 (8):1101–9. doi: 10.1101/gr.205245.116.
  • Nasir, Z. A., I. Colbeck, S. Sultan, and S. Ahmed. 2012. Bioaerosols in residential micro-environments in low income countries: A case study from Pakistan. Environ. Pollut. 168:15–22. doi: 10.1016/j.envpol.2012.03.047.
  • Oberdörster, G., J. Ferin, R. Fau-Gelein, S. C. Gelein R Fau-Soderholm, J. Soderholm Sc Fau Finkelstein, and J. Finkelstein. 1992. Role of the alveolar macrophage in lung injury: Studies with ultrafine particles. Environ. Health Perspect. 97:193–9. doi: 10.1289/ehp.97-1519541.
  • Pakulski, J. D., A. Baldwin, A. L. Dean, S. Durkin, D. Karentz, C. A. Kelley, K. Scott, H. J. Spero, S. W. Wilhelm, R. W. Amin, et al. 2007. Responses of heterotrophic bacteria to solar irradiance in the eastern Pacific Ocean. Aquat. Microb. Ecol. 47:153–62. doi: 10.3354/ame047153.
  • Peng, X., J. S. Zhang, Y. Y. Li, W. Li, G. M. Xu, and Y. C. Yan. 2008. Biodegradation of insecticide carbofuran by Paracoccus sp. YM3. J. Environ. Sci. Health B. 43 (7):588–94. doi: 10.1080/03601230802234492.
  • Price, M. N., P. S. Dehal, and A. P. Arkin. 2009. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26 (7):1641–50. doi: 10.1093/molbev/msp077.
  • Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41 (D1):D590–D596. doi: 10.1093/nar/gks1219.
  • Roy, R., R. Jan, U. Joshi, R. Bhor, K. Pai, and P. G. Satsangi. 2020. Characterization, pro-inflammatory response and cytotoxic profile of bioaerosols from urban and rural residential settings in Pune, India. Environ. Pollut. 264:114698. doi: 10.1016/j.envpol.2020.114698.
  • Shen, Z., J. Cao, S. Liu, C. Zhu, X. Wang, T. Zhang, H. Xu, and T. Hu. 2011. Chemical composition of PM10 and PM2.5 collected at ground level and 100 meters during a strong winter-time pollution episode in Xi’an, China. Journal of the Air & Waste Management Association 61 (11):1150–9. doi: 10.1080/10473289.2011.608619.
  • Shen, Z., J. Cao, L. Zhang, L. Liu, Q. Zhang, J. Li, Y. Han, C. Zhu, Z. Zhao, and S. Liu. 2014a. Day–night differences and seasonal variations of chemical species in PM10 over Xi’an, northwest China. Environ. Sci. Pollut. Res. 21 (5):3697–705. doi: 10.1007/s11356-013-2352-z.
  • Shen, Z., J. Cao, L. Zhang, Z. Zhao, J. Dong, L. Wang, Q. Wang, G. Li, S. Liu, and Q. Zhang. 2014b. Characteristics of surface O3 over Qinghai Lake area in Northeast Tibetan Plateau, China. Sci. Total Environ. 500-501:295–301. doi: 10.1016/j.scitotenv.2014.08.104.
  • Shen, Z., Y. Han, J. Cao, J. Tian, C. Zhu, S. Liu, P. Liu, and Y. Wang. 2010. Characteristics of Traffic-related Emissions: A Case Study in Roadside Ambient Air over Xi’an, China. Aerosol Air Qual. Res. 10 (3):292–300. doi: 10.4209/aaqr.2009.10.0061.
  • Smets, W., S. Moretti, S. Denys, and S. Lebeer. 2016. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 139:214–21. doi: 10.1016/j.atmosenv.2016.05.038.
  • Tang, J. W. 2009. The effect of environmental parameters on the survival of airborne infectious agents. J. R Soc. Interface 6 (Suppl 6):S737–S746. doi: 10.1098/rsif.2009.0227.focus.
  • Tignat-Perrier, R., A. Dommergue, A. Thollot, O. Magand, P. Amato, M. Joly, K. Sellegri, T. M. Vogel, and C. Larose. 2020. Seasonal shift in airborne microbial communities. Sci. Total Environ. 716:137129. doi: 10.1016/j.scitotenv.2020.137129.
  • Towner, K. J. 2009. Acinetobacter: An old friend, but a new enemy. J. Hosp. Infect. 73 (4):355–63. doi: 10.1016/j.jhin.2009.03.032.
  • Tsay, M.-D., C.-C. Tseng, N.-X. Wu, and C.-Y. Lai. 2020. Size distribution and antibiotic-resistant characteristics of bacterial bioaerosol in intensive care unit before and during visits to patients. Environ. Int. 144:106024. doi: 10.1016/j.envint.2020.106024.
  • Uetake, J., Y. Tobo, Y. Uji, T. C. J. Hill, P. J. DeMott, S. M. Kreidenweis, and R. Misumi. 2019. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front. Microbiol. 10:1572. doi: 10.3389/fmicb.2019.01572.
  • Wang, B., Y. Li, Z. Xie, S. Du, X. Zeng, J. Hou, and T. Ma. 2020. Characteristics of microbial activity in atmospheric aerosols and its relationship to chemical composition of PM2.5 in Xi’an, China. J. Aerosol Sci. 146:105572. doi: 10.1016/j.jaerosci.2020.105572.
  • Wang, X., Z. Shen, J. Cao, L. Zhang, L. Liu, J. Li, S. Liu, and Y. Sun. 2012. Characteristics of surface ozone at an urban site of Xi’an in Northwest China. J. Environ. Monit. 14 (1):116–26. doi: 10.1039/c1em10541h.
  • Wang, X., Z. Shen, S. Huang, H. Che, L. Zhang, Y. Lei, J. Sun, G. Shen, H. Xu, and J. Cao. 2022. Water-soluble iron in PM2.5 in winter over six Chinese megacities: Distributions, sources, and environmental implications. Environ. Pollut. 314:120329. doi: 10.1016/j.envpol.2022.120329.
  • Wei, M., C. Xu, X. Xu, C. Zhu, J. Li, and G. Lv. 2019. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM1.0) and fine (PM2.5) particles. Ecotoxicol. Environ. Saf. 171:37–46. doi: 10.1016/j.ecoenv.2018.12.026.
  • Wei, K., Z. Zou, Y. Zheng, J. Li, F. Shen, C.-Y. Wu, Y. Wu, M. Hu, and M. Yao. 2016. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 550:751–9. doi: 10.1016/j.scitotenv.2016.01.137.
  • Williams, D. J., P. A. D. Grimont, A. Cazares, F. Grimont, E. Ageron, K. A. Pettigrew, D. Cazares, E. Njamkepo, F.-X. Weill, E. Heinz, et al. 2022. The genus Serratia revisited by genomics. Nat. Commun. 13 (1):5195. doi: 10.1038/s41467-022-32929-2.
  • Wu, T., P. Liu, X. He, H. Xu, and Z. Shen. 2021. Bioavailability of heavy metals bounded to PM2.5 in Xi’an, China: Seasonal variation and health risk assessment. Environ. Sci. Pollut. Res. Int. 28 (27):35844–53. doi: 10.1007/s11356-021-13198-w.
  • Xie, Z., S. Du, T. Ma, J. Hou, X. Zeng, and Y. Li. 2021. High time-resolved characterization of airborne microbial community during a typical haze pollution process. J. Hazard. Mater. 415:125722. doi: 10.1016/j.jhazmat.2021.125722.
  • Xie, Z., Y. Li, R. Lu, W. Li, C. Fan, P. Liu, J. Wang, and W. Wang. 2018. Characteristics of total airborne microbes at various air quality levels. J. Aerosol Sci. 116:57–65. doi: 10.1016/j.jaerosci.2017.11.001.
  • Yamamoto, N., K. Bibby, J. Qian, D. Hospodsky, H. Rismani-Yazdi, W. W. Nazaroff, and J. Peccia. 2012. Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J. 6 (10):1801–11. doi: 10.1038/ismej.2012.30.
  • Yue, S., L. Ren, T. Song, L. Li, Q. Xie, W. Li, M. Kang, W. Zhao, L. Wei, H. Ren, et al. 2019. Abundance and diurnal trends of fluorescent bioaerosols in the troposphere over Mt. Tai, China, in Spring. JGR. Atmospheres 124 (7):4158–73. doi: 10.1029/2018JD029486.
  • Zeng, Y., Y. Ning, Z. Shen, L. Zhang, T. Zhang, Y. Lei, Q. Zhang, G. Li, H. Xu, S. S. H. Ho, et al. 2021. The roles of N, S, and O in molecular absorption features of brown carbon in PM2.5 in a typical semi-arid megacity in Northwestern China. JGR. Atmospheres 126 (16):e2021JD034791. doi: 10.1029/2021JD034791.
  • Zhang, S., R. Du, H. Chen, W. Ren, and P. Du. 2019. Seasonal variation of microbial activity and pathogenic bacteria under non-serious pollution levels in Beijing. Aerosol Air Qual. Res. 19 (8):1798–807. doi: 10.4209/aaqr.2019.05.0256.
  • Zhang, T., S. Huang, D. Wang, J. Sun, Q. Zhang, H. Xu, S. S. Hang Ho, J. Cao, and Z. Shen. 2022. Seasonal and diurnal variation of PM2.5 HULIS over Xi’an in Northwest China: Optical properties, chemical functional group, and relationship with reactive oxygen species (ROS). Atmos. Environ. 268:118782. doi: 10.1016/j.atmosenv.2021.118782.
  • Zhang, Q., Z. Shen, J. Cao, R. Zhang, L. Zhang, R. J. Huang, C. Zheng, L. Wang, S. Liu, H. Xu, et al. 2015. Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi’an, China. Atmos. Environ. 112:64–71. doi: 10.1016/j.atmosenv.2015.04.033.
  • Zhen, Q., Y. Deng, Y. Wang, X. Wang, H. Zhang, X. Sun, and Z. Ouyang. 2017. Meteorological factors had more impact on airborne bacterial communities than air pollutants. Sci. Total Environ. 601-602:703–12. doi: 10.1016/j.scitotenv.2017.05.049.
  • Zhen, Q., Z. Fang, Y. Wang, and Z. Ouyang. 2019. Bacterial characteristics in atmospheric haze and potential impacts on human health. Shengtai Xuebao. 39:2244–54.
  • Zheng, D., X. Huang, and Y. Guo. 2022. Spatiotemporal variation of ozone pollution and health effects in China. Environ. Sci. Pollut. Res. Int. 29 (38):57808–22. doi: 10.1007/s11356-022-19935-z.
  • Zhong, S., L. Zhang, X. Jiang, and P. Gao. 2019. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and non-haze days in the winter in Guilin, China. Sci. Total Environ. 655:202–10. doi: 10.1016/j.scitotenv.2018.11.268.
  • Zhou, Y., Y. Lai, X. Tong, M. H. Y. Leung, J. C. K. Tong, I. A. Ridley, and P. K. H. Lee. 2020. Airborne bacteria in outdoor air and air of mechanically ventilated buildings at city scale in Hong Kong across seasons. Environ. Sci. Technol. 54 (19):11732–43. doi: 10.1021/acs.est.9b07623.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.