320
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Aerosol photoemission as a versatile tool for nanoparticle surface investigations: Evaluation of metal oxide formation and surface properties of multi-component particles

ORCID Icon, &
Pages 54-69 | Received 09 Jun 2023, Accepted 12 Nov 2023, Published online: 07 Dec 2023

References

  • Aronniemi, M., J. Lahtinen, and P. Hautojärvi. 2004. Characterization of iron oxide thin films. Surf. Interface Anal. 36 (8):1004–6. doi: 10.1002/sia.1823.
  • Braz, V., R. Borin, and B. Zandi. 2005. High-temperature oxidation of pure Fe and the ferritic steel 2.25Cr1Mo2. Materials and experimental procedure. Mater. Res. 8 (4):365–9.
  • Burtscher, H., A. Schmidt-Ott, and H. C. Siegmann. 1984. Photoelectron yield of small silver and gold particles suspended in gas up to a photon energy of 10 eV. Z. Phys. B – Condens. Matter 56 (3):197–9. doi: 10.1007/BF01304172.
  • Christodoulides, J. A., Y. Huang, Y. Zhang, G. C. Hadjipanayis, I. Panagiotopoulos, and D. Niarchos. 2000. CoPt and FePt thin films for high density recording media. J. Appl. Phys. 87 (9):6938–40. doi: 10.1063/1.372892.
  • Derry, G. N., M. E. Kern, and E. H. Worth. 2015. Recommended values of clean metal surface work functions. J. Vac. Sci. Technol. A Vacuum, Surf., Film 33 (6):060801. doi: 10.1116/1.4934685.
  • Duch, J., P. Kubisiak, K. H. Adolfsson, M. Hakkarainen, M. Golda-Cepa, and A. Kotarba. 2017. Work function modifications of graphite surface via oxygen plasma treatment. Appl. Surf. Sci. 419:439–46. doi: 10.1016/j.apsusc.2017.05.007.
  • Eggersdorfer, M. L., and S. E. Pratsinis. 2012. The structure of agglomerates consisting of polydisperse particles. Aerosol Sci. Technol. 46 (3):347–53. doi: 10.1080/02786826.2011.631956.
  • Eom, N., M. E. Messing, J. Johansson, and K. Deppert. 2021. General Trends in Core-Shell Preferences for Bimetallic Nanoparticles. ACS Nano. 15 (5):8883–95. doi: 10.1021/acsnano.1c01500.
  • Feng, J., G. Biskos, and A. Schmidt-Ott. 2015. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process. Sci. Rep. 5 (1):15788. (October):1–9. doi: 10.1038/srep15788.
  • Fomenko, V. S. 1966. Handbook of thermoionic properties electronic work functions and Richardson constants of elements and compounds. New York.
  • Fowler, R. H. 1931. The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 38 (1):45–56. doi: 10.1103/PhysRev.38.45.
  • Gong, S., A. Wang, Y. Wang, H. Liu, N. Han, and Y. Chen. 2020. Heterostructured Ni/NiO Nanocatalysts for Ozone Decomposition. ACS Appl. Nano Mater. 3 (1):597–607. doi: 10.1021/acsanm.9b02143.
  • Gordy, W., and W. J. O. Thomas. 1956. Electronegativities of the elements. J. Chem. Phys. 24 (2):439–44. doi: 10.1063/1.1742493.
  • Guisbiers, G., S. Khanal, F. Ruiz-Zepeda, J. Roque De La Puente, and M. José-Yacaman. 2014. Cu–Ni nano-alloy: Mixed, core-shell or Janus nano-particle? Nanoscale 6 (24):14630–5. doi: 10.1039/c4nr05739b.
  • Gustus, R., M. Szafarska, and W. Maus-Friedrichs. 2021. Oxygen-free transport of samples in silane-doped inert gas atmospheres for surface analysis. J. Vac. Sci. Technol. B 39 (5):054204. doi: 10.1116/6.0001180.
  • Hallberg, R. T., L. Ludvigsson, C. Preger, B. O. Meuller, K. A. Dick, and M. E. Messing. 2018. Hydrogen-assisted spark discharge generated metal nanoparticles to prevent oxide formation. Aerosol Sci. Technol. 52 (3):347–58. doi: 10.1080/02786826.2017.1411580.
  • He, S., Y. Liu, H. Zhan, and L. Guan. 2021. Direct thermal annealing synthesis of ordered Pt alloy nanoparticles coated with a thin N-doped carbon shell for the oxygen reduction reaction. ACS Catal. 11 (15):9355–65. doi: 10.1021/acscatal.1c02434.
  • Jacobs, M. I., B. Xu, O. Kostko, N. Heine, M. Ahmed, and K. R. Wilson. 2016. Probing the heterogeneous ozonolysis of squalene nanoparticles by photoemission. J. Phys. Chem. A 120 (43):8645–56. doi: 10.1021/acs.jpca.6b09061.
  • Kalidindi, S. B., U. Sanyal, and B. R. Jagirdar. 2008. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys. Chem. Chem. Phys. 10 (38):5870–4. doi: 10.1039/b805726e.
  • Kim, J., S. Shrestha, M. Souri, J. G. Connell, S. Park, and A. Seo. 2020. High-temperature optical properties of indium tin oxide thin-films. Sci. Rep. 10 (1):12486. doi: 10.1038/s41598-020-69463-4.
  • Kohut, A. 2022. Hydrogen-assisted spark generation of silver nanoparticles: The effect of hydrogen content on the signal intensity in surface-enhanced Raman spectroscopy. J. Aerosol Sci. 167:106090. doi: 10.1016/j.jaerosci.2022.106090.
  • Kraushofer, F., Z. Jakub, M. Bichler, J. Hulva, P. Drmota, M. Weinold, M. Schmid, M. Setvin, U. Diebold, P. Blaha, et al. 2018. Atomic-scale structure of the hematite α-Fe2O3(11-02) “r-Cut” surface. J. Phys. Chem. C Nanomater. Interfaces 122 (3):1657–69. doi: 10.1021/acs.jpcc.7b10515.
  • Kuroki, H., T. Tamaki, M. Matsumoto, M. Arao, Y. Takahashi, H. Imai, Y. Kitamoto, and T. Yamaguchi. 2018. Refined structural analysis of connected platinum-iron nanoparticle catalysts with enhanced oxygen reduction activity. ACS Appl. Energy Mater. 1 (2):324–30. doi: 10.1021/acsaem.7b00295.
  • Kuroki, H., T. Yamaguchi, Y. Imura, R. Fujita, and T. Tamaki. 2020. Carbon-free platinum − iron nanonetworks with chemically ordered structures as durable oxygen reduction electrocatalysts for polymer electrolyte fuel cells. ACS Appl. Nano Mater. 3 (10):9912–23. doi: 10.1021/acsanm.0c01962.
  • Makov, G., A. Nitzan, and L. E. Brus. 1988. On the ionization potential of small metal and dielectric particles. J. Chem. Phys. 88 (8):5076–85. doi: 10.1063/1.454661.
  • Marple, V. A., and B. Y. H. Liu. 1975. On fluid flow and aerosol impaction in inertial impactors. J. Colloid Interface Sci. 53 (1):31–4. doi: 10.1016/0021-9797(75)90031-4.
  • Mimura, K., J.-W. Lim, M. Isshiki, Y. Zhu, and Q. Jiang. 2006. Brief review of oxidation kinetics of copper at 350 °C to 1050 °C. Metall. Mater. Trans. A 37 (4):1231–7. doi: 10.1007/s11661-006-1074-y.
  • Müller, U., M. Ammann, H. Burtscher, and A. Schmidt-Ott. 1991. Photoemission from clean and oxygen-covered ultrafine nickel particles. Phys. Rev. B Condens. Matter. 44 (15):8284–7. doi: 10.1103/PhysRevB.44.8284.
  • Müller, U., A. Schmidt-Ott, and H. Burtscher. 1987. First measurement of gas adsorption to free ultrafine particles: O2 on Ag. Phys. Rev. Lett. 58 (16):1684–6. doi: 10.1103/PhysRevLett.58.1684.
  • Muntean, A., M. Wagner, J. Meyer, and M. Seipenbusch. 2016. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge. J. Nanopart. Res. 18 (8):229. doi: 10.1007/s11051-016-3547-2.
  • Mysak, E. R., D. E. Starr, K. R. Wilson, and H. Bluhm. 2010. Note: A combined aerodynamic lens/ambient pressure x-ray photoelectron spectroscopy experiment for the on-stream investigation of aerosol surfaces. Rev. Sci. Instrum. 81 (1):016106. doi: 10.1063/1.3276714.
  • Naghash, A. R., T. H. Etsell, and S. Xu. 2006. XRD and XPS study of Cu–Ni interactions on reduced copper-nickel-aluminum oxide solid solution catalysts. Chem. Mater. 18 (10):2480–8. doi: 10.1021/cm051910o.
  • Nikitenko, S. I., T. Chave, C. Cau, H.-P. Brau, and V. Flaud. 2015. Photothermal hydrogen production using noble-metal-free Ti@TiO 2 core–shell nanoparticles under visible–NIR light irradiation. ACS Catal. 5 (8):4790–5. doi: 10.1021/acscatal.5b01401.
  • Olszok, V., M. Bierwirth, and A. P. Weber. 2021. Interaction of reactive gases with platinum aerosol particles at room temperature: Effects on morphology and surface properties. Nanomaterials (Basel) 11 (9):2266. doi: 10.3390/nano11092266.
  • Olszok, V., M. Bierwirth, and A. P. Weber. 2023. Creation of gases with interplanetary oxygen concentration at atmospheric pressure by nanoparticle aerosol scavengers: Implications for metal processing from nm to mm range. ACS Appl. Nano Mater. 6 (3):1660–6. doi: 10.1021/acsanm.2c04585.
  • Plack, A., M. Bierwirth, A. P. Weber, and N. Gunkelmann. 2022. Experimental and atomistic study of high speed collisions of gold nanoparticles with a gold substrate: Validation of interatomic potentials. J. Aerosol Sci. 159:105846. doi: 10.1016/j.jaerosci.2021.105846.
  • Ramey, R. L., and S. J. Katzberg. 1970. Surface work function of gadolinium. J. Chem. Phys. 53 (4):1347–8. doi: 10.1063/1.1674178.
  • Rennecke, S., and A. P. Weber. 2013. A novel model for the determination of nanoparticle impact velocity in low pressure impactors. J. Aerosol Sci. 55:89–103. doi: 10.1016/j.jaerosci.2012.07.014.
  • Reuter-Hack, K., G. Kasper, and A. P. Weber. 2009. Temperature dependence of the work function of free nanoparticle agglomerates. Appl. Phys. A 95 (3):629–34. doi: 10.1007/s00339-009-5158-6.
  • Rodriguez Diaz, M., M. Szafarska, R. Gustus, K. Möhwald, and H. J. Maier. 2022. Oxide free wire arc sprayed coatings—An avenue to enhanced adhesive tensile strength. Metals (Basel) 12 (4):684. doi: 10.3390/met12040684.
  • Röhrbein, J., and A. P. Weber. 2018. A system for on-line characterization of gas-borne particle surface properties based on their photoemission. J. Aerosol Sci. 120 (December 2017):82–91. doi: 10.1016/j.jaerosci.2018.03.002.
  • Rump, B. S., and B. L. Gehman. 1965. Work function measurements of nickel, molybdenum, and tungsten in a cesium–hydrogen atmosphere. J. Appl. Phys. 36 (8):2347–52. doi: 10.1063/1.1714488.
  • Sachtler, W. M. H. 1956. Work function and electrical conductivity of hydrogen covered nickel films. The effect of contamination. J. Chem. Phys. 25 (4):751–2. doi: 10.1063/1.1743042.
  • Sarantopoulou, E., Z. Kollia, G. Dražic, S. Kobe, and N. S. Antonakakis. 2011. Long-term oxidization and phase transition of InN nanotextures. Nanoscale Res. Lett. 6 (1):387. doi: 10.1186/1556-276X-6-387.
  • Schoeller, H., and J. Cho. 2009. Oxidation and reduction behavior of pure indium. J. Mater. Res. 24 (2):386–93. doi: 10.1557/JMR.2009.0040.
  • Schwyn, S., E. Garwin, and A. Schmidt-Ott. 1988. Aerosol generation by spark discharge. J. Aerosol Sci 19 (5):639–42. doi: 10.1016/0021-8502(88)90215-7.
  • Seifner, M. S., M. Snellman, O. A. Makgae, K. Kumar, D. Jacobsson, M. Ek, K. Deppert, M. E. Messing, and K. A. Dick. 2022. Interface dynamics in Ag-Cu3P nanoparticle heterostructures. J. Am. Chem. Soc. 144 (1):248–58. doi: 10.1021/jacs.1c09179.
  • Seipenbusch, M., A. P. Weber, A. Schiel, and G. Kasper. 2003. Influence of the gas atmosphere on restructuring and sintering kinetics of nickel and platinum aerosol nanoparticle agglomerates. J. Aerosol Sci. 34 (12):1699–709. doi: 10.1016/S0021-8502(03)00355-0.
  • Soon, A., M. Todorova, B. Delley, and C. Stampfl. 2006. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation. Phys. Rev. B 73 (16):1–12. doi: 10.1103/PhysRevB.73.165424.
  • Svensson, C. R., L. Ludvigsson, B. O. Meuller, M. L. Eggersdorfer, K. Deppert, M. Bohgard, J. H. Pagels, M. E. Messing, and J. Rissler. 2015. Characteristics of airborne gold aggregates generated by spark discharge and high temperature evaporation furnace: Mass-mobility relationship and surface area. J. Aerosol Sci. 87:38–52. doi: 10.1016/j.jaerosci.2015.05.004.
  • Tabrizi, N. S., M. Ullmann, V. A. Vons, U. Lafont, and A. Schmidt-Ott. 2009a. Generation of nanoparticles by spark discharge. J. Nanopart. Res. 11 (2):315–32. doi: 10.1007/s11051-008-9407-y.
  • Tabrizi, N. S., Q. Xu, N. M. Van Der Pers, U. Lafont, and A. Schmidt-Ott. 2009b. Synthesis of mixed metallic nanoparticles by spark discharge. J. Nanopart. Res. 11 (5):1209–18. doi: 10.1007/s11051-008-9568-8.
  • Ternero, P., M. Sedrpooshan, D. Wahlqvist, B. O. Meuller, M. Ek, J. Hübner, R. Westerström, and M. E. Messing. 2023. Effect of the carrier gas on the structure and composition of Co–Ni bimetallic nanoparticles generated by spark ablation. J. Aerosol Sci 170:106146. doi: 10.1016/j.jaerosci.2023.106146.
  • Weber, A. P., M. Seipenbusch, and G. Kasper. 2001a. Application of aerosol techniques to study the catalytic formation of methane on gasborne nickel nanoparticles. J. Phys. Chem. A 105 (39):8958–63. doi: 10.1021/jp0115594.
  • Weber, A. P., M. Seipenbusch, and G. Kasper. 2001b. Correlation between catalytic activity and surface state of gas-borne nickel nanoparticles. Chem. Eng. Technol. 24 (7):702–5. doi: 10.1002/1521-4125(200107)24:7<702::AID-CEAT702>3.0.CO;2-4.
  • Wong, K., V. Kasperovich, G. Tikhonov, and V. V. Kresin. 2001. Photo-ionization efficiency curves of alkali nanoclusters in a beam and determination of metal work functions. Appl. Phys. B Lasers Opt. 73 (4):407–10. doi: 10.1007/s003400100665.
  • Wood, D. M. 1981. Classical size dependence of the work function of small metallic spheres. Phys. Rev. Lett. 46 (11):749– doi: 10.1103/PhysRevLett.46.749.
  • Yanagida, K., O. Okada, and K. Oka. 1993. Low-energy electronic states related to contact electrification of pendant-group polymers:Photoemission and contact potential difference measurement. Jpn. J. Appl. Phys. 32 (12R):5603–10. doi: 10.1143/JJAP.32.5603.
  • Yang, Y., B. Song, X. Ke, F. Xu, K. N. Bozhilov, L. Hu, R. Shahbazian-Yassar, and M. R. Zachariah. 2020. Aerosol synthesis of high entropy alloy nanoparticles. Langmuir 36 (8):1985–92. doi: 10.1021/acs.langmuir.9b03392.
  • Zhou, L., and M. R. Zachariah. 2012. Size resolved particle work function measurement of free nanoparticles: Aggregates vs. spheres. Chem. Phys. Lett 525–526:77–81. doi: 10.1016/j.cplett.2011.11.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.