4,372
Views
3
CrossRef citations to date
0
Altmetric
AAAR Plenary Lecture Paper

Fundamentals of low-cost aerosol sensor design and operation

, ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 1-15 | Received 11 Jul 2023, Accepted 20 Sep 2023, Published online: 05 Dec 2023

References

  • Agarwal, J. K., and B. Y. H. Liu. 1980. A criterion for accurate aerosol sampling in calm air. Am. Ind. Hyg. Assoc. J. 41 (3):191–7. doi: 10.1080/15298668091424591.
  • Barkjohn, K. K., B. Gantt, and A. L. Clements. 2021. Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor. Atmos. Meas. Tech. 4 (6):4617–37. doi: 10.5194/amt-14-4617-2021.
  • Belyaev, S. P., and L. M. Levin. 1974. Techniques for collection of representative aerosol samples. J. Aerosol Sci. 5 (4):325–38. doi: 10.1016/0021-8502(74)90130-X.
  • Bittner, A. S., E. S. Cross, D. H. Hagan, C. Malings, E. Lipsky, and A. P. Grieshop. 2022. Performance characterization of low-cost air quality sensors for off-grid deployment in rural Malawi. Atmos. Meas. Tech. 15 (11):3353–76. doi: 10.5194/amt-15-3353-2022.
  • Che, H., G. Shi, A. Uchiyama, A. Yamazaki, H. Chen, P. Goloub, and X. Zhang. 2008. Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China. Atmos. Chem. Phys. 8 (12):3199–214. doi: 10.5194/acp-8-3199-2008.
  • Cheeseman, M. J., B. Ford, S. C. Anenberg, M. J. Cooper, E. V. Fischer, M. S. Hammer, S. Magzamen, R. V. Martin, A. Van Donkelaar, J. Volckens, et al. 2022. Disparities in air pollutants across racial, ethnic, and poverty groups at US public schools. Geohealth 6 (12):e2022GH000672. doi: 10.1029/2022GH000672.
  • Chen, L., X. Pang, J. Li, B. Xing, T. An, K. Yuan, S. Dai, Z. Wu, S. Wang, Q. Wang, et al. 2022. Vertical profiles of O3, NO2 and PM in a major fine chemical industry park in the Yangtze River Delta of China detected by a sensor package on an unmanned aerial vehicle. Sci. Total Environ. 845:157113. doi: 10.1016/j.scitotenv.2022.157113.
  • Davies, C. N. (1968). The entry of aerosols into sampling tubes and heads. J. Phys. D: Appl. Phys. 1 (7):921–932. doi: 10.1088/0022-3727/1/7/314.
  • Delp, W. W., and B. C. Singer. 2020. Wildfire smoke adjustment factors for low-cost and professional PM2.5 monitors with optical sensors. Sensors (Basel) 20 (13):3683. doi: 10.3390/s20133683.
  • Dhammapala, R., A. Basnayake, S. Premasiri, L. Chathuranga, and K. Mera. 2022. PM2.5 in Sri Lanka: Trend analysis, low-cost sensor correlations and spatial distribution. Aerosol Air Qual. Res. 22 (5):210266. doi: 10.4209/aaqr.210266.
  • Do, K., H. Yu, J. Velasquez, M. Grell-Brisk, H. Smith, and C. E. Ivey. 2021. A data-driven approach for characterizing community scale air pollution exposure disparities in inland Southern California. J. Aerosol Sci. 152:105704. doi: 10.1016/j.jaerosci.2020.105704.
  • Dubey, R., A. K. Patra, and Nazneen. (2022). Vertical profile of particulate matter: A review of techniques and methods. Air Qual. Atmos. Health 15 (6):979–1010. doi: 10.1007/s11869-022-01192-1.
  • Fanti, G., F. Borghi, A. Spinazzè, S. Rovelli, D. Campagnolo, M. Keller, A. Cattaneo, E. Cauda, and D. M. Cavallo. 2021. Features and practicability of the next-generation sensors and monitors for exposure assessment to airborne pollutants: A systematic review. Sensors (Basel) 21 (13):4513. doi: 10.3390/s21134513.
  • Fire and Smoke Map. 2023. AirNow. Accessed August 15, 2023. https://fire.airnow.gov.
  • Glib, J., A. Mortier, M. Schulz, E. Andrews, Y. Balkanski, S. E. Bauer, A. M. K. Benedictow, H. Bian, R. Checa-Garcia, M. Chin, et al. 2021. AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos. Chem. Phys. 21 (1):87–128. doi: 10.5194/acp-21-87-2021.
  • Goodfellow, H. D. and R. Kosonen, eds. 2020. Industrial ventilation design guidebook. Vol. 1. Waltham, MA: Academic Press.
  • Hagan, D. H., and J. H. Kroll. 2020. Assessing the accuracy of low-cost optical particle sensors using a physics-based approach. Atmos. Meas. Tech. 13 (11):6343–55. doi: 10.5194/amt-13-6343-2020.
  • Hangal, S., and K. Willeke. 1990. Aspiration efficiency: Unified model for all forward sampling angles. Environ. Sci. Technol. 24 (5):688–91. doi: 10.1021/es00075a012.
  • He, M., N. Kuerbanjiang, and S. Dhaniyala. 2020. Performance characteristics of the low-cost Plantower PMS optical sensor. Aerosol Sci. Technol. 54 (2):232–41. doi: 10.1080/02786826.2019.1696015.
  • Hofman, J., M. Nikolaou, S. P. Shantharam, C. Stroobants, S. Weijs, and V. P. La Manna. 2022. Distant calibration of low-cost PM and NO2 sensors; evidence from multiple sensor testbeds. Atmos. Pollut. Res. 13 (1):101246. doi: 10.1016/j.apr.2021.101246.
  • Holder, A. L., A. K. Mebust, L. A. Maghran, M. R. McGown, K. E. Stewart, D. M. Vallano, R. A. Elleman, and K. R. Baker. 2020. Field evaluation of low-cost particulate matter sensors for measuring wildfire smoke. Sensors (Basel) 20 (17):4796. doi: 10.3390/s20174796.
  • Jaffe, D. A., C. Miller, K. Thompson, B. Finley, M. Nelson, J. Ouimette, and E. Andrews. 2023. An evaluation of the U.S. EPA’s correction equation for PurpleAir sensor data in smoke, dust, and wintertime urban pollution events. Atmos. Meas. Tech. 16 (5):1311–22. doi: 10.5194/amt-16-1311-2023.
  • Jain, S., A. A. Presto, and N. Zimmerman. 2021. Spatial modeling of daily PM2.5, NO2, and CO concentrations measured by a low-cost sensor network: comparison of linear, machine learning, and hybrid land use models. Environ. Sci. Technol. 55 (13):8631–41. doi: 10.1021/acs.est.1c02653.
  • Kaur, K., and K. E. Kelly. 2023a. Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah. Atmos. Meas. Tech. 16 (10):2455–70. doi: 10.5194/amt-16-2455-2023.
  • Kaur, K., and K. E. Kelly. 2023b. Laboratory evaluation of the Alphasense OPC-N3, and the Plantower PMS5003 and PMS6003 sensors. J. Aerosol Sci. 171:106181. doi: 10.1016/j.jaerosci.2023.106181.
  • Lee, C.-H., Y.-B. Wang, and H.-L. Yu. 2019. An efficient spatiotemporal data calibration approach for the low-cost PM2.5 sensing network: A case study in Taiwan. Environ. Int. 130:104838. doi: 10.1016/j.envint.2019.05.032.
  • Levy Zamora, M., C. Buehler, A. Datta, D. R. Gentner, and K. Koehler. 2023. Identifying optimal co-location calibration periods for low-cost sensors. Atmos. Meas. Tech. 16 (1):169–79. doi: 10.5194/amt-16-169-2023.
  • Li, Z., X. Gu, L. Wang, D. Li, Y. Xie, K. Li, O. Dubovik, G. Schuster, P. Goloub, Y. Zhang, et al. 2013. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos. Chem. Phys. 13 (20):10171–83. doi: 10.5194/acp-13-10171-2013.
  • Malings, C., R. Tanzer, A. Hauryliuk, P. K. Saha, A. L. Robinson, A. A. Presto, and R. Subramanian. 2020. Fine particle mass monitoring with low-cost sensors: Corrections and long-term performance evaluation. Aerosol Sci. Technol. 54 (2):160–74. doi: 10.1080/02786826.2019.1623863.
  • Mei, H., P. Han, Y. Wang, N. Zeng, D. Liu, Q. Cai, Z. Deng, Y. Wang, Y. Pan, and X. Tang. 2020. Field evaluation of low-cost particulate matter sensors in Beijing. Sensors (Basel) 20 (16):4381. doi: 10.3390/s20164381.
  • Molina Rueda, E., E. Carter, C. L'Orange, C. Quinn, and J. Volckens. 2023. Size-resolved field performance of low-cost particulate matter sensors. Environ. Sci. Technol. Lett. 10 (3):247–53. doi: 10.1021/acs.estlett.3c00030.
  • Moosmuller, H., and C.-Y. She. 1991. Equal intensity and phase contours in focused Gaussian laser beams. IEEE J. Quantum Electron. 27 (4):869–74. doi: 10.1109/3.83316.
  • Nguyen, P. D. M., N. Martinussen, G. Mallach, G. Ebrahimi, K. Jones, N. Zimmerman, and S. B. Henderson. 2021. Using low-cost sensors to assess fine particulate matter infiltration (PM2.5) during a wildfire smoke episode at a large inpatient healthcare facility. Int. J. Environ. Res. Public Health 18 (18):9811. doi: 10.3390/ijerph18189811.
  • Ouimette, J. R., W. C. Malm, B. A. Schichtel, P. J. Sheridan, E. Andrews, J. A. Ogren, and W. P. Arnott. 2022. Evaluating the PurpleAir monitor as an aerosol light scattering instrument. Atmos. Meas. Tech. 15 (3):655–76. doi: 10.5194/amt-15-655-2022.
  • Pang, X., L. Chen, K. Shi, F. Wu, J. Chen, S. Fang, J. Wang, and M. Xu. 2021. A lightweight low-cost and multipollutant sensor package for aerial observations of air pollutants in atmospheric boundary layer. Sci. Total Environ. 764:142828. doi: 10.1016/j.scitotenv.2020.142828.
  • Petters, M. D., and S. M. Kreidenweis. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7 (8):1961–71. doi: 10.5194/acp-7-1961-2007.
  • Pharis, N., J. Habeck, J. Douglas, J. Meiners, A. Ally, P. Collins, and J. Flaten. 2022. Modifying and calibrating low-cost optical particle counters for stratospheric ballooning use. In 2020 Academic High Altitude Conference, Presented at the 2020 Academic High Altitude Conference, Iowa State University Digital Press. doi: 10.31274/ahac.11650.
  • Snider, G., C. L. Weagle, R. V. Martin, A. Van Donkelaar, K. Conrad, D. Cunningham, C. Gordon, M. Zwicker, C. Akoshile, P. Artaxo, et al. 2015. SPARTAN: A global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmos. Meas. Tech. 8 (1):505–21. doi: 10.5194/amt-8-505-2015.
  • Solomon, P. A., andS. Dhaniyala. 2020. Preface. Aerosol Sci. Technol. 54 (2):143–6. doi: 10.1080/02786826.2020.1706973.
  • Sun, Y., A. Mousavi, S. Masri, and J. Wu. 2022. Socioeconomic disparities of low-cost air quality sensors in California, 2017–2020. Am. J. Public Health. 112 (3):434–42. doi: 10.2105/AJPH.2021.306603.
  • Tengono, J. 2022. Personal Communication with Jim Ouimette.
  • Tryner, J., J. Mehaffy, D. Miller-Lionberg, and J. Volckens. 2020a. Effects of aerosol type and simulated aging on performance of low-cost PM sensors. J. Aerosol Sci. 150:105654. doi: 10.1016/j.jaerosci.2020.105654.
  • Tryner, J., J. Mehaffy, D. Miller-Lionberg, and J. Volckens. 2020b. Dataset associated with “Effects of aerosol type and simulated aging on performance of low-cost PM sensors. https://hdl.handle.net/10217/207239.
  • Zieger, P., R. Fierz-Schmidhauser, E. Weingartner, and U. Baltensperger. 2013. Effects of relative humidity on aerosol light scattering: Results from different European sites. Atmos. Chem. Phys. 13 (21):10609–31. doi: 10.5194/acp-13-10609-2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.