719
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Theoretical characterization of the kinetics of the multiphase ozonolysis of an aqueous maleic acid droplet

ORCID Icon, ORCID Icon & ORCID Icon
Pages 337-355 | Received 25 Jul 2023, Accepted 07 Nov 2013, Published online: 04 Dec 2023

References

  • Adler, T. B., G. Knizia, and H.-J. Werner. 2007. A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127 (22):221106. doi: 10.1063/1.2817618.
  • Alang, A. K., S. G. Aggarwal, K. Singh, D. Soni, and K. Kawamura. 2023. Water-soluble dicarboxylic acids, oxoacids and α-dicarbonyls in the tropical aerosols in coastal megacity Mumbai: Molecular characteristics and formation processes. J. Atmos. Chem. 80 (2):137–55. doi: 10.1007/s10874-022-09442-3.
  • Anglada, J. M., M. Martins-Costa, M. F. Ruiz-López, and J. S. Francisco. 2014. Spectroscopic signatures of ozone at the air-water interface and photochemistry implications. Proc. Natl. Acad. Sci. U S A 111 (32):11618–23. doi: 10.1073/pnas.1411727111.
  • Bao, J. L., and D. G. Truhlar. 2017. Variational transition state theory: Theoretical framework and recent developments. Chem. Soc. Rev. 46 (24):7548–96. doi: 10.1039/C7CS00602K.
  • Bayly, C. I., P. Cieplak, W. Cornell, and P. A. Kollman. 1993. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 97 (40):10269–80. doi: 10.1021/j100142a004.
  • Benbelkacem, H., H. Cano, S. Mathe, and H. Debellefontaine. 2003. Maleic acid ozonation: Reactor modeling and rate coefficients determination. Ozone Sci. Eng. 25 (1):13–24. doi: 10.1080/713610647.
  • Berendsen, H. J. C., J. R. Grigera, and T. P. Straatsma. 1987. The missing term in effective pair potentials. J. Phys. Chem. 91 (24):6269–71. doi: 10.1021/j100308a038.
  • Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81 (8):3684–90. doi: 10.1063/1.448118.
  • Berthelot, D. 1889. Sur le Mélange des Gaz. C. R. Acad. Sci. Paris 126:1703.
  • Beste, A., and A. C. I. Buchanan. 2010. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers. Energy Fuels 24 (5):2857–67. doi: 10.1021/ef1001953.
  • Chapleski, R. C., Y. Zhang, D. R. Troya, and J. Morris. 2016. Heterogeneous chemistry and reaction dynamics of the atmospheric oxidants, O 3, NO 3, and OH, on organic surfaces. Chem. Soc. Rev. 45 (13):3731–46. doi: 10.1039/C5CS00375J.
  • Chan, L. P., and C. K. Chan. 2012. Roles of the phase state and water content in ozonolysis of internal mixtures of maleic acid and ammonium sulfate particles. Aerosol Sci. Technol. 46 (7):781–93. doi: 10.1080/02786826.2012.665514.
  • Chen, Z. M., H. L. Wang, L. H. Zhu, C. X. Wang, C. Y. Jie, and W. Hua. 2008. Aqueous-phase ozonolysis of methacrolein and methyl vinyl ketone: A potentially important source of atmospheric aqueous oxidants. Atmos. Chem. Phys. 8 (8):2255–65. doi: 10.5194/acp-8-2255-2008.
  • Chung, L. W., W. Sameera, M. C. Ramozzi, R. Page, A. J. Hatanaka, M. Petrova, G. P. Harris, T. V. Li, X. Ke, Z. Liu, et al. 2015. The ONIOM method and its applications. Chem. Rev. 115 (12):5678–796. doi: 10.1021/cr5004419.
  • Cieplak, P., W. D. Cornell, C. Bayly, and P. A. Kollman. 1995. Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins. J. Comput. Chem. 16 (11):1357–77. doi: 10.1002/jcc.540161106.
  • Cossi, M., N. Rega, G. Scalmani, and V. Barone. 2003. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 24 (6):669–81. doi: 10.1002/jcc.10189.
  • Criegee, R. 1975. Mechanism of ozonolysis. Angew. Chem. Int. Ed. Engl. 14 (11):745–52. doi: 10.1002/anie.197507451.
  • Dash, M. R., M. Balaganesh, and B. Rajakumar. 2014. Rate coefficients for the gas-phase reaction of OH radical with α-pinene: An experimental and computational study. Mol. Phys. 112 (11):1495–511. doi: 10.1080/00268976.2013.840395.
  • Dash, M. R., and S. S. Mishra. 2022. Mechanistic and kinetic approach on methyl isocyanate (CH3NCO) with OH and Cl. Mol. Phys. 120 (21):e2124933. doi: 10.1080/00268976.2022.2124933.
  • Davidson, E. R., and D. Feller. 1986. Basis set selection for molecular calculations. Chem. Rev. 86 (4):681–96. doi: 10.1021/cr00074a002.
  • Dennis-Smither, B. J., F. H. Marshall, R. E. H. Miles, T. C. Preston, and J. P. Reid. 2014. Volatility and oxidative aging of aqueous maleic acid aerosol droplets and the dependence on relative humidity. J. Phys. Chem. A 118 (30):5680–91. doi: 10.1021/jp504823j.
  • dos Santos, A. P., M. Girotto, and Y. Levin. 2016. Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method. J. Chem. Phys. 144 (14):144103. doi: 10.1063/1.4945560.
  • Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322 (8):549–60. doi: 10.1002/andp.19053220806.
  • Frisch, M. J., G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al. 2016. Gaussian 16 Rev. C.01.
  • Fukui, K. 1981. The path of chemical reactions - the IRC approach. Acc. Chem. Res. 14 (12):363–8. doi: 10.1021/ar00072a001.
  • Gallimore, P. J., P. Achakulwisut, F. D. Pope, J. F. Davies, D. R. Spring, and M. Kalberer. 2011. Importance of relative humidity in the oxidative ageing of organic aerosols: Case study of the ozonolysis of maleic acid aerosol. Atmos. Chem. Phys. 11 (23):12181–95. doi: 10.5194/acp-11-12181-2011.
  • Goldberg, D. L., T. P. Vinciguerra, K. M. Hosley, C. P. Loughner, T. P. Canty, R. J. Salawitch, and R. R. Dickerson. 2015. Evidence for an increase in the ozone photochemical lifetime in the eastern United States using a regional air quality model. JGR. Atmos. 120 (24):12778–93. doi: 10.1002/2015JD023930.
  • Grira, A., C. Amarandei, C. Roman, O. Bejaoui, N. Aloui, G. El Dib, C. Arsene, I. G. Bejan, R. I. Olariu, A. Canosa, et al. 2022. Gas-phase ozone reaction kinetics of C5–C8 unsaturated alcohols of biogenic interest. J. Phys. Chem. A 126 (27):4413–23. doi: 10.1021/acs.jpca.2c02805.
  • Hess, B., Bekker, H. Berendsen, H. J. C, and Fraaije, J. G. E. M. 1997. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18 (12):1463–72. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.
  • Hoigné, J., and H. Bader. 1983. Rate coefficients of reactions of ozone with organic and inorganic compounds in water—I: Non-dissociating organic compounds. Water Res. 17 (2):173–83. doi: 10.1016/0043-1354(83)90098-2.
  • Huang, J.-H., F. Zhang, Y.-P. Shi, J.-R. Cai, Y.-H. Chuang, W.-P. Hu, Y.-Y. Lee, and C. C. Wang. 2023. Water plays multifunctional roles in the intervening formation of secondary organic aerosols in ozonolysis of limonene: A valence photoelectron spectroscopy and density functional theory study. J. Phys. Chem. Lett. 14 (15):3765–76. doi: 10.1021/acs.jpclett.3c00560.
  • IPCC (Intergovernmental Panel on Climate Change), ed. 2023. Technical summary. In Climate change 2021 – The physical science basis: Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change, 35–144. Cambridge, UK: Cambridge University Press.
  • Irrgang, M. E., J. M. Hays, and P. M. Kasson. 2018. gmxapi: A high-level interface for advanced control and extension of molecular dynamics simulations. Bioinformatics 34 (22):3945–7. doi: 10.1093/bioinformatics/bty484.
  • Jorgensen, W. L., J. P. Ulmschneider, and J. Tirado-Rives. 2004. Free energies of hydration from a generalized born model and an all-atom force field. J. Phys. Chem. B 108 (41):16264–70. doi: 10.1021/jp0484579.
  • Kanakidou, M., J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, et al. 2005. Organic aerosol and global climate modelling: A review. Atmos. Chem. Phys. 5 (4):1053–123. doi: 10.5194/acp-5-1053-2005.
  • Kannath, S., P. Adamczyk, D. Ferro-Costas, A. Fernández-Ramos, D. T. Major, and A. Dybala-Defratyka. 2020. Role of microsolvation and quantum effects in the accurate prediction of kinetic isotope effects: The case of hydrogen atom abstraction in ethanol by atomic hydrogen in aqueous solution. J. Chem. Theory Comput. 16 (2):847–59. doi: 10.1021/acs.jctc.9b00774.
  • Kaur Kohli, R., R. S. Reynolds, K. R. Wilson, and J. F. Davies. 2023. Exploring the influence of particle phase in the ozonolysis of oleic and elaidic acid. Aerosol Sci. Technol. 0 (0):1–18. doi: 10.1080/02786826.2023.2226183.
  • Khan, M. a H., C. J. Percival, R. L. Caravan, C. A. Taatjes, and D. E. Shallcross. 2018. Criegee intermediates and their impacts on the troposphere. Environ. Sci. Process. Impacts. 20 (3):437–53. doi: 10.1039/C7EM00585G.
  • Klamt, A., C. Moya, and J. Palomar. 2015. A comprehensive comparison of the IEFPCM and SS(V)PE continuum solvation methods with the COSMO approach. J. Chem. Theory Comput. 11 (9):4220–5. doi: 10.1021/acs.jctc.5b00601.
  • Kleber, J., K. Laß, and G. Friedrichs. 2013. Quantitative time-resolved vibrational sum frequency generation spectroscopy as a tool for thin film kinetic studies: New insights into oleic acid monolayer oxidation. J. Phys. Chem. A 117 (33):7863–75. Accessed June 12, 2023. https://pubs.acs.org/doi/pdf/10 .1021/jp404087s. doi: 10.1021/jp404087s.
  • Knizia, G., and H.-J. Werner. 2008. Explicitly correlated RMP2 for high-spin open-shell reference states. J. Chem. Phys. 128 (15):154103. doi: 10.1063/1.2889388.
  • Kroll, J. H., and J. H. Seinfeld. 2008. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42 (16):3593–624. doi: 10.1016/j.atmosenv.2008.01.003.
  • Leitzke, A., and C. V. Sonntag. 2009. Ozonolysis of unsaturated acids in aqueous solution: acrylic, methacrylic, maleic, fumaric and muconic acids. Ozone Sci. Eng. 31 (4):301–8. doi: 10.1080/01919510903041354.
  • Li, W., C. Y. Pak, and Y.-L. S. Tse. 2018. Free energy study of H2O, N2O5, SO2, and O3 gas sorption by water droplets/slabs. J. Chem. Phys. 148 (16):164706. doi: 10.1063/1.5022389.
  • Li, W., C. Y. Pak, X. Wang, and Y.-L. S. Tse. 2019. Uptake of common atmospheric gases by organic-coated water droplets. J. Phys. Chem. C 123 (31):18924–31. doi: 10.1021/acs.jpcc.9b03252.
  • Lily, M., B. Baidya, W. Wang, F. Liu, and A. K. Chandra. 2020. Atmospheric chemistry of CHF2CF2OCH2CF3: Reactions with Cl atoms, fate of CHF2CF2OC•HCF3 radical, formation of OH radical and Criegee intermediate. Atmos. Environ. 242:117805. doi: 10.1016/j.atmosenv.2020.117805.
  • Lorentz, H. A. 1881. Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys. 248 (1):127–36. doi: 10.1002/andp.18812480110.
  • Ma, Q., M. Schwilk, C. Köppl, and H.-J. Werner. 2017. Scalable electron correlation methods. 4. Parallel explicitly correlated local coupled cluster with pair natural orbitals (PNO-LCCSD-F12). J. Chem. Theory Comput. 13 (10):4871–96. doi: 10.1021/acs.jctc.7b00799.
  • Maçôas, E. M. S., R. Fausto, J. Lundell, M. Pettersson, L. Khriachtchev, and M. Räsänen. 2001. A matrix isolation spectroscopic and quantum chemical study of fumaric and maleic acid. J. Phys. Chem. A 105 (15):3922–33. doi: 10.1021/jp003802p.
  • Marshall, F. H., T. Berkemeier, M. Shiraiwa, L. Nandy, P. B. Ohm, C. S. Dutcher, and J. P. Reid. 2018. Influence of particle viscosity on mass transfer and heterogeneous ozonolysis kinetics in aqueous–sucrose–maleic acid aerosol. Phys. Chem. Chem. Phys. 20 (22):15560–73. doi: 10.1039/C8CP01666F.
  • Miertuš, S., E. Scrocco, and J. Tomasi. 1981. Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55 (1):117–29. doi: 10.1016/0301-0104(81)85090-2.
  • Nájera, J. J., C. J. Percival, and A. B. Horn. 2009. Infrared spectroscopic studies of the heterogeneous reaction of ozone with dry maleic and fumaric acid aerosol particles. Phys. Chem. Chem. Phys. 11 (40):9093–103. doi: 10.1039/B909623J.
  • Nájera, J. J., C. J. Percival, and A. B. Horn. 2010. Kinetic studies of the heterogeneous oxidation of maleic and fumaric acid aerosols by ozone under conditions of high relative humidity. Phys. Chem. Chem. Phys. 12 (37):11417–27. doi: 10.1039/B924775K.
  • Nikitin, T., S. Lopes, and R. Fausto. 2022. Matrix isolation study of fumaric and maleic acids in solid nitrogen. J. Phys. Chem. A 126 (27):4392–412. doi: 10.1021/acs.jpca.2c02770.
  • Pavarelli, G., J. Velasquez Ochoa, A. Caldarelli, F. Puzzo, F. Cavani, and J.-L. Dubois. 2015. A new process for maleic anhydride synthesis from a renewable building block: The gas-phase oxidehydration of bio-1-butanol. ChemSusChem 8 (13):2250–9. doi: 10.1002/cssc.201500095.
  • Peterson, K. A., T. B. Adler, and H.-J. Werner. 2008. Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar. J. Chem. Phys. 128 (8):084102. doi: 10.1063/1.2831537.
  • Pfeifle, M., Y.-T. Ma, A. W. Jasper, L. B. Harding, W. L. Hase, and S. J. Klippenstein. 2018. Nascent energy distribution of the Criegee intermediate CH2OO from direct dynamics calculations of primary ozonide dissociation. J. Chem. Phys. 148 (17):174306. doi: 10.1063/1.5028117.
  • Pope, F. D., P. J. Gallimore, S. J. Fuller, R. A. Cox, and M. Kalberer. 2010. Ozonolysis of maleic acid aerosols: Effect upon aerosol hygroscopicity, phase and mass. Environ. Sci. Technol. 44 (17):6656–60. doi: 10.1021/es1008278.
  • Pöschl, U. 2005. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew. Chem. Int. Ed. Engl. 44 (46):7520–40. doi: 10.1002/anie.200501122.
  • Pryor, W. A., D. H. Giamalva, and D. F. Church. 1984. Kinetics of ozonation. 2. Amino acids and model compounds in water and comparisons to rates in nonpolar solvents. J. Am. Chem. Soc. 106 (23):7094–100. doi: 10.1021/ja00335a038.
  • Pye, H. O. T., A. Nenes, B. Alexander, A. P. Ault, M. C. Barth, S. L. Clegg, J. L. Collett, Jr., K. M. Fahey, C. J. Hennigan, H. Herrmann, et al. 2020. The acidity of atmospheric particles and clouds. Atmos. Chem. Phys. 20 (8):4809–88. doi: 10.5194/acp-20-4809-2020.
  • Razumovskii, S. D., and G. E. Zaikov. 1980. Kinetics and mechanism of the reaction of ozone with double bonds. Russ. Chem. Rev. 49 (12):1163–80. doi: 10.1070/RC1980v049n12ABEH002535.
  • Riipinen, I., T. Yli-Juuti, J. R. Pierce, T. Petäjä, D. R. Worsnop, M. Kulmala, and N. M. Donahue. 2012. The contribution of organics to atmospheric nanoparticle growth. Nature Geosci. 5 (7):453–8. doi: 10.1038/ngeo1499.
  • Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner. 2014. Climate effects of aerosol-cloud interactions. Science 343 (6169):379–80. doi: 10.1126/science.1247490.
  • Ryde, U. 2017. How many conformations need to be sampled to obtain converged QM/MM energies? The curse of exponential averaging. J. Chem. Theory Comput. 13 (11):5745–52. doi: 10.1021/acs.jctc.7b00826.
  • Salta, Z., M. Vega-Teijido, A. Katz, N. Tasinato, V. Barone, and O. N. Ventura. 2022. Dipolar 1,3-cycloaddition of thioformaldehyde S-methylide (CH2 SCH2) to ethylene and acetylene. A comparison with (valence) isoelectronic O3, SO2, CH2 OO and CH2 SO. J. Comput. Chem. 43 (21):1420–33. doi: 10.1002/jcc.26946.
  • Sato, K., F. Ikemori, S. Ramasamy, A. Fushimi, K. Kumagai, A. Iijima, and Y. Morino. 2021. Four- and five-carbon dicarboxylic acids present in secondary organic aerosol produced from anthropogenic and biogenic volatile organic compounds. Atmosphere 12 (12):1703. doi: 10.3390/atmos12121703.
  • Schank, K. 2004. Der Mechanismus der Alken-Ozonolyse – eine kritische Betrachtung. Helv. Chim. Acta 87 (8):2074–84. doi: 10.1002/hlca.200490186.
  • Schwilk, M., Q. Ma, C. Köppl, and H.-J. Werner. 2017. Scalable electron correlation methods. 3. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO-LCCSD). J. Chem. Theory Comput. 13 (8):3650–75. doi: 10.1021/acs.jctc.7b00554.
  • Sempere, R., and K. Kawamura. 1996. Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from Western Pacific. Atmos. Environ. 30 (10-11):1609–19. doi: 10.1016/1352-2310(95)00436-X.
  • Shiraiwa, M., K. Ueda, A. Pozzer, G. Lammel, C. J. Kampf, A. Fushimi, S. Enami, A. M. Arangio, J. Fröhlich-Nowoisky, Y. Fujitani, et al. 2017. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51 (23):13545–67. doi: 10.1021/acs.est.7b04417.
  • Srivastava, D., T. V. Vu, S. Tong, Z. Shi, and R. M. Harrison. 2022. Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. Npj Clim. Atmos. Sci. 5 (1):1–30. doi: 10.1038/s41612-022-00238-6.
  • Stewart, A. C., M. J. Paterson, and S. J. Greaves. 2022. The influence of saturation on the surface structure of mixed fatty acid-on-water aerosol: A molecular dynamics study. Environ. Sci: Atmos. 2 (6):1516–25. doi: 10.1039/D2EA00089J.
  • Stokes, G. G. 1901. Mathematical and physical papers. Vol. 3, 38–54. Cambridge University Press.
  • Tomasi, J., B. Mennucci, and R. Cammi. 2005. Quantum mechanical continuum solvation models. Chem. Rev. 105 (8):2999–3093. doi: 10.1021/cr9904009.
  • Truhlar, D. G., and B. C. Garrett. 1984. Variational transition state theory. Annu. Rev. Phys. Chem. 35 (1):159–89. doi: 10.1146/annurev.pc.35.100184.001111.
  • Truhlar, D. G., B. C. Garrett, and S. J. Klippenstein. 1996. Current status of transition-state theory. J. Phys. Chem. 100 (31):12771–800. doi: 10.1021/jp953748q.
  • Truhlar, G., and B. C. Garrett. 1987. Dynamical bottlenecks and semiclassical tunneling paths for chemical reactions. J. Chim. Phys. 84:365–9. doi: 10.1051/jcp/1987840365.
  • Truong, T. N. 1994. A direct ab initio dynamics approach for calculating thermal rate coefficients using variational transition state theory and multidimensional semiclassical tunneling methods. An application to the CH4 + H↔CH3 + H2 reaction. J. Chem. Phys. 100 (11):8014–25. doi: 10.1063/1.466795.
  • Vácha, R., P. Slavíček, M. Mucha, B. J. Finlayson-Pitts, and P. Jungwirth. 2004. Adsorption of atmospherically relevant gases at the air/water interface: Free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2. J. Phys. Chem. A 108 (52):11573–9. doi: 10.1021/jp046268k.
  • Vieceli, J., M. Roeselová, N. Potter, L. X. Dang, B. C. Garrett, and D. J. Tobias. 2005. Molecular dynamics simulations of atmospheric oxidants at the air − water interface: Solvation and accommodation of OH and O3. J. Phys. Chem. B 109 (33):15876–92. doi: 10.1021/jp051361+.
  • Wang, G., and K. Kawamura. 2005. Molecular characteristics of urban organic aerosols from Nanjing: A case study of a mega-city in China. Environ. Sci. Technol. 39 (19):7430–8. doi: 10.1021/es051055+.
  • Wang, X., J. Sun, D. Han, L. Bao, Q. Mei, B. Wei, Z. An, M. He, S. Yuan, J. Xie, et al. 2020. Gaseous and heterogeneous reactions of low-molecular-weight (LMW) unsaturated ketones with O3: Mechanisms, kinetics, and effects of mineral dust in tropospheric chemical processes. Chem. Eng. J. 395:125083. doi: 10.1016/j.cej.2020.125083.
  • Wang, X., Y. Wei, H. Zhang, L. Bao, M. He, and S. Yuan. 2021. Understanding the properties of methyl vinyl ketone and methacrolein at the air-water interface: Adsorption, heterogeneous reaction and environmental impact analysis. Chemosphere 283:131183. doi: 10.1016/j.chemosphere.2021.131183.
  • Werner, H.-J., P. J. Knowles, F. R. Manby, J. A. Black, K. Doll, A. Heßelmann, D. Kats, A. Köhn, T. Korona, D. A. Kreplin, et al. 2020. The Molpro quantum chemistry package. J. Chem. Phys. 152 (14):144107. doi: 10.1063/5.0005081.
  • Wheeler, S. E., D. H. Ess, and K. N. Houk. 2008. Thinking out of the black box: Accurate barrier heights of 1,3-dipolar cycloadditions of ozone with acetylene and ethylene. J. Phys. Chem. A 112 (8):1798–807. doi: 10.1021/jp710104d.
  • Willis, M., and K. Wilson. 2022. Coupled interfacial and bulk kinetics govern the timescales of multiphase ozonolysis reactions. J. Phys. Chem. A 126 (30):4991–5010. doi: 10.26434/chemrxiv-2022-k2snf.
  • Wojcieszak, R., F. Santarelli, S. Paul, F. Dumeignil, F. Cavani, and R. V. Gonçalves. 2015. Recent developments in maleic acid synthesis from bio-based chemicals. Sustain. Chem. Process. 3 (1):9. doi: 10.1186/s40508-015-0034-5.
  • Wright, S., and D. G. Leaist. 1998. Diffusion of weak acids in salt solutions maleic acid + NaCl + water. Faraday Trans. 94 (10):1457–63. doi: 10.1039/a800424b.
  • Yeh, I.-C., and M. L. Berkowitz. 1999. Ewald summation for systems with slab geometry. J. Chem. Phys. 111 (7):3155–62. doi: 10.1063/1.479595.
  • Zhang, J., Jim, Wei, Y, and Fang, Z. 2019. Ozone pollution: A major health hazard worldwide. Front. Immunol. 10:2518. () doi: 10.3389/fimmu.2019.02518.
  • Zhao, Y., and D. G. Truhlar. 2008a. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41 (2):157–67. doi: 10.1021/ar700111a.
  • Zhao, Y., and D. G. Truhlar. 2008b. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Account. 120 (1-3):215–41. doi: 10.1007/s00214-007-0310-x.
  • Zheng, J., J. L. Bao, R. Meana-Pañeda, S. Zhang, B. J. Lynch, J. C. Corchado, Y.-Y. Chuang, P. L. Fast, W.-P. Hu, Y.-P. Liu, et al. 2017. Polyrate-version 2017-C. Minneapolis, MN: University of Minnesota.
  • Zheng, J., and D. G. Truhlar. 2010. Kinetics of hydrogen-transfer isomerizations of butoxyl radicals. Phys. Chem. Chem. Phys. 12 (28):7782–93. doi: 10.1039/B927504E.