365
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Experimental characterization of particle wall-loss behaviors in UCR dual-90m3 Teflon chambers

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 288-300 | Received 04 Aug 2023, Accepted 23 Nov 2023, Published online: 17 Jan 2024

References

  • Adachi, M., Y. Kousaka, and K. Okuyama. 1985. Unipolar and bipolar diffusion charging of ultrafine aerosol particles. J. Aerosol Sci. 16 (2):109–23. doi: 10.1016/0021-8502(85)90079-5.
  • Bilsback, K. R., Y. He, C. D. Cappa, R. Y. W. Chang, B. Croft, R. V. Martin, N. L. Ng, J. H. Seinfeld, J. R. Pierce, and S. H. Jathar. 2023. Vapors are lost to walls, not to particles on the wall: artifact-corrected parameters from chamber experiments and implications for global secondary organic aerosol. Environ. Sci. Technol. 57 (1):53–63. doi: 10.1021/acs.est.2c03967.
  • Biskos, G., K. Reavell, and N. Collings. 2005. Unipolar diffusion charging of aerosol particles in the transition regime. J. Aerosol Sci 36 (2):247–65. doi: 10.1016/j.jaerosci.2004.09.002.
  • Buckley, A. J., M. D. Wright, and D. L. Henshaw. 2008. A technique for rapid estimation of the charge distribution of submicron aerosols under atmospheric conditions. Aerosol Sci. Technol 42 (12):1042–51. doi: 10.1080/02786820802400645.
  • Carter, W. P. L., D. R. Cocker, D. R. Fitz, I. L. Malkina, K. Bumiller, C. G. Sauer, J. T. Pisano, C. Bufalino, and C. Song. 2005. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ 39 (40):7768–88. doi: 10.1016/j.atmosenv.2005.08.040.
  • Charan, S. M., Y. Huang, and J. H. Seinfeld. 2019. Computational simulation of secondary organic aerosol formation in laboratory chambers. Chem. Rev. 119 (23):11912–44. doi: 10.1021/acs.chemrev.9b00358.
  • Charan, S. M., W. Kong, R. C. Flagan, and J. H. Seinfeld. 2018. Effect of particle charge on aerosol dynamics in Teflon environmental chambers. Aerosol Sci. Technol 52 (8):854–71. doi: 10.1080/02786826.2018.1474167.
  • Cocker, D. R., R. C. Flagan, and J. H. Seinfeld. 2001. State-of-the-art chamber facility for studying atmospheric aerosol chemistry. Environ. Sci. Technol. 35 (12):2594–601. doi: 10.1021/es0019169.
  • Collins, D. R., R. C. Flagan, and J. H. Seinfeld. 2002. Improved inversion of scanning DMA data. Aerosol Sci. Technol. 36 (1):1–9. doi: 10.1080/027868202753339032.
  • Cooper, G., G. Langer, and J. Rosinski. 1979. Submicron Aerosol Losses in Aluminized Mylar Bags. J. Appl. Meteor. 18 (1):57–68. doi: 10.1175/1520-0450(1979)018<0057:SALIAM>2.0.CO;2.
  • Crump, J. G., R. C. Flagan, and J. H. Seinfeld. 1982. Particle wall loss rates in vessels. Aerosol Sci. Technol. 2 (3):303–9. doi: 10.1080/02786828308958636.
  • Crump, J. G., and J. H. Seinfeld. 1981. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. J. Aerosol Sci. 12 (5):405–15. doi: 10.1016/0021-8502(81)90036-7.
  • Franchin, A., S. Ehrhart, J. Leppä, T. Nieminen, S. Gagné, S. Schobesberger, D. Wimmer, J. Duplissy, F. Riccobono, E. M. Dunne, et al. 2015. Experimental investigation of ion-ion recombination under atmospheric conditions. Atmos. Chem. Phys. 15 (13):7203–16. doi: 10.5194/acp-15-7203-2015.
  • Fuchs, N. A. 1963. On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofis. Pura e Appl 56 (1):185–93. doi: 10.1007/BF01993343.
  • He, M., and S. Dhaniyala. 2014. Experimental characterization of flowrate-dependent bipolar diffusion charging efficiencies of sub-50nm particles. J. Aerosol Sci 76:175–87. doi: 10.1016/j.jaerosci.2014.06.009.
  • Hildebrandt, L., N. M. Donahue, and S. N. Pandis. 2009. High formation of secondary organic aerosol from the photo-oxidation of toluene. Atmos. Chem. Phys. 9 (9):2973–86. doi: 10.5194/acp-9-2973-2009.
  • Hoppel, W. A., and G. M. Frick. 1986. Ion—aerosol attachment coefficients and the steady-state charge distribution on aerosols in a bipolar ion environment. Aerosol Sci. Technol. 5 (1):1–21. doi: 10.1080/02786828608959073.
  • Kirkby, J., J. Duplissy, K. Sengupta, C. Frege, H. Gordon, C. Williamson, M. Heinritzi, M. Simon, C. Yan, J. Almeida, et al. 2016. Ion-induced nucleation of pure biogenic particles. Nature 533 (7604):521–6. doi: 10.1038/nature17953.
  • Leskinen, A., P. Yli-Pirilä, K. Kuuspalo, O. Sippula, P. Jalava, M. R. Hirvonen, J. Jokiniemi, A. Virtanen, M. Komppula, and K. E. J. Lehtinen. 2015. Characterization and testing of a new environmental chamber. Atmos. Meas. Tech. 8 (6):2267–78. doi: 10.5194/amt-8-2267-2015.
  • Liu, B. Y., and K. W. Lee. 1975. An aerosol generator of high stability. Am. Ind. Hyg. Assoc. J. 36 (12):861–5. doi: 10.1080/0002889758507357.
  • Loza, C. L., P. S. Chhabra, L. D. Yee, J. S. Craven, R. C. Flagan, and J. H. Seinfeld. 2012. Chemical aging of m-xylene secondary organic aerosol: Laboratory chamber study. Atmos. Chem. Phys. 12 (1):151–67. doi: 10.5194/acp-12-151-2012.
  • Mahfouz, N. G. A., and N. M. Donahue. 2020. Primary ion diffusion charging and particle wall loss in smog chamber experiments. Aerosol Sci. Technol. 54 (9):1058–69. doi: 10.1080/02786826.2020.1757032.
  • Marlow, W. H., and J. R. Brock. 1975. Calculations of bipolar charging of aerosols. J. Colloid Interface Sci. 51 (1):23–31. doi: 10.1016/0021-9797(75)90078-8.
  • McMurry, P. H., and D. Grosjean. 1985. Gas and aerosol wall losses in teflon film smog chambers. Environ. Sci. Technol. 19 (12):1176–82. doi: 10.1021/es00142a006.
  • McMurry, P. H., and D. J. Rader. 1985. Aerosol wall losses in electrically charged chambers. Aerosol Sci. Technol 4 (3):249–68. doi: 10.1080/02786828508959054.
  • Nah, T., R. C. McVay, J. R. Pierce, J. H. Seinfeld, and N. L. Ng. 2017. Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments. Atmos. Chem. Phys. 17 (3):2297–310. doi: 10.5194/acp-17-2297-2017.
  • Nakao, S., M. Shrivastava, A. Nguyen, H. Jung, and D. Cocker. 2011. Interpretation of secondary organic aerosol formation from diesel exhaust photooxidation in an environmental chamber. Aerosol Sci. Technol. 45 (8):964–72. doi: 10.1080/02786826.2011.573510.
  • Pierce, J. R., G. J. Engelhart, L. Hildebrandt, E. A. Weitkamp, R. K. Pathak, N. M. Donahue, A. L. Robinson, P. J. Adams, and S. N. Pandis. 2008. Constraining particle evolution from wall losses, coagulation, and condensation-evaporation in smog-chamber experiments: Optimal estimation based on size distribution measurements. Aerosol Sci. Technol 42 (12):1001–15. doi: 10.1080/02786820802389251.
  • Saucy, D. A., R. M. Kamens, and R. W. Linton. 1983. An aerosol injection and outdoor chamber gas. Particle Reactions 17 (12):2617–24. doi: 10.1016/0004-6981(83)90091-4.
  • Shao, Y., Y. Wang, M. Du, A. Voliotis, M. R. Alfarra, S. P. O'Meara, S. F. Turner, and G. McFiggans. 2022. Characterisation of the Manchester aerosol chamber facility. Atmos. Meas. Tech. 15 (2):539–59. doi: 10.5194/amt-15-539-2022.
  • Simones, M. P., V. R. Gutti, R. M. Meyer, and S. K. Loyalka. 2011. Measurements of aerosol charge and size distribution for graphite, gold, palladium, and silver nanoparticles. Nucl. Technol 176 (2):211–26. doi: 10.13182/NT10-10.
  • Sunol, A. M., S. M. Charan, and J. H. Seinfeld. 2018. Computational simulation of the dynamics of secondary organic aerosol formation in an environmental chamber. Aerosol Sci. Technol. 52 (4):470–82. doi: 10.1080/02786826.2018.1427209.
  • Trump, E. R., S. A. Epstein, I. Riipinen, and N. M. Donahue. 2016. Wall effects in smog chamber experiments: A model study. Aerosol Sci. Technol. 50 (11):1180–200. doi: 10.1080/02786826.2016.1232858.
  • Van Dingenen, R., F. Raes, and H. Vanmarcke. 1989. Molecule and aerosol particle wall losses in SMOG chambers made of glass. J. Aerosol Sci 20 (1):113–22. doi: 10.1016/0021-8502(89)90035-9.
  • Vansevenant, B., C. Louis, C. Ferronato, L. Fine, P. Tassel, P. Perret, E. Kostenidou, B. Temime-Roussel, B. D’Anna, K. Sartelet, et al. 2021. Evolution under dark conditions of particles from old and modern diesel vehicles in a new environmental chamber characterized with fresh exhaust emissions. Atmos. Meas. Tech. 14 (12):7627–55. doi: 10.5194/amt-14-7627-2021.
  • Wagner, R., C. Yan, K. Lehtipalo, J. Duplissy, T. Nieminen, J. Kangasluoma, P. S. Bauer, A. Bergen, A. Bernhammer, F. Bianchi, et al. 2017. The role of ions in new particle formation in the CLOUD chamber. Atmos. Chem. Phys. 17:15181–97. doi: 10.5194/acp-17-15181-2017.
  • Wang, N., S. D. Jorga, J. R. Pierce, N. M. Donahue, and S. N. Pandis. 2018. Particle wall-loss correction methods in smog chamber experiments. Atmos. Meas. Tech. 11 (12):6577–88. doi: 10.5194/amt-11-6577-2018.
  • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for particles in the submicron size range. J. Aerosol Sci 19 (3):387–9. doi: 10.1016/0021-8502(88)90278-9.
  • Xu, N., and D. R. Collins. 2021. Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies. Atmos. Meas. Tech. 14 (4):2891–906. doi: 10.5194/amt-14-2891-2021.