309
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Gas-particle partitioning process contributes more to nitrate dominated air pollution than oxidation process in northern China

, , , , , & show all
Pages 181-194 | Received 16 Aug 2023, Accepted 07 Dec 2023, Published online: 26 Dec 2023

References

  • Brook, R. D., S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. L. Hong, R. V. Luepker, M. A. Mittleman, et al. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121 (21):2331–78. doi: 10.1161/CIR.0b013e3181dbece1.
  • Chan, Y.‐C., M. J. Evans, P. He, C. D. Holmes, L. Jaeglé, P. Kasibhatla, X.‐Y. Liu, T. Sherwen, J. A. Thornton, X. Wang, et al. 2021. Heterogeneous nitrate production mechanisms in intense haze events in the North China Plain. JGR. Atmos. 126 (9):e2021JD034688. doi: 10.1029/2021JD034688.
  • Chang, W. L., P. V. Bhave, S. S. Brown, N. Riemer, J. Stutz, and D. Dabdub. 2011. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review. Aerosol Sci. Technol. 45 (6):665–95. doi: 10.1080/02786826.2010.551672.
  • Chen, X. R., H. C. Wang, K. D. Lu, C. M. Li, T. Y. Zhai, Z. F. Tan, X. F. Ma, X. P. Yang, Y. H. Liu, S. Y. Chen, et al. 2020. Field determination of nitrate formation pathway in Winter Beijing. Environ. Sci. Technol. 54 (15):9243–53. doi: 10.1021/acs.est.0c00972.
  • Cheng, J., J. P. Su, T. Cui, X. Li, X. Dong, F. Sun, Y. Y. Yang, D. Tong, Y. X. Zheng, Y. S. Li, et al. 2019. Dominant role of emission reduction in PM2.5 air quality improvement in Beijing during 2013-2017: A model-based decomposition analysis. Atmos. Chem. Phys. 19 (9):6125–46. doi: 10.5194/acp-19-6125-2019.
  • Dai, Q. L., B. S. Liu, X. H. Bi, J. H. Wu, D. N. Liang, Y. F. Zhang, Y. C. Feng, and P. K. Hopke. 2020. Dispersion normalized PMF provides insights into the significant changes in source contributions to PM2.5 after the COVID-19 outbreak. Environ. Sci. Technol. 54 (16):9917–27. doi: 10.1021/acs.est.0c02776.
  • Dewald, P., J. M. Liebmann, N. Friedrich, J. Shenolikar, J. Schuladen, F. Rohrer, D. Reimer, R. Tillmann, A. Novelli, C. M. Cho, et al. 2020. Evolution of NO3 reactivity during the oxidation of isoprene. Atmos. Chem. Phys. 20 (17):10459–75. doi: 10.5194/acp-20-10459-2020.
  • Ding, J., P. S. Zhao, J. Su, Q. Dong, X. Du, and Y. F. Zhang. 2019. Aerosol pH and its driving factors in Beijing. Atmos. Chem. Phys. 19 (12):7939–54. doi: 10.5194/acp-19-7939-2019.
  • Fountoukis, C., and A. Nenes. 2007. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosols. Atmos. Chem. Phys. 7 (17):4639–59. doi: 10.5194/acp-7-4639-2007.
  • Fu, H. B., and J. M. Chen. 2017. Formation, features and controlling strategies of severe haze-fog pollutions in China. Sci. Total Environ. 578:121–38. doi: 10.1016/j.scitotenv.2016.10.201.
  • Fu, X., S. X. Wang, J. Xing, X. Y. Zhang, T. Wang, and J. M. Hao. 2017. Increasing ammonia concentrations reduce the effectiveness of particle pollution control achieved via SO2 and NOX emissions reduction in East China. Environ. Sci. Technol. Lett. 4 (6):221–7. doi: 10.1021/acs.estlett.7b00143.
  • Fu, X., T. Wang, J. Gao, P. Wang, Y. M. Liu, S. X. Wang, B. Zhao, and L. K. Xue. 2020. Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in Northern China. Environ. Sci. Technol. 54 (7):3881–9. doi: 10.1021/acs.est.9b07248.
  • Gao, J., Y. M. Li, J. Y. Li, G. L. Shi, Z. R. Liu, B. Han, X. Tian, Y. S. Wang, Y. C. Feng, and A. G. Russell. 2021. Impact of formation pathways on secondary inorganic aerosol during haze pollution in Beijing: Quantitative evidence from high-resolution observation and modeling. Geophys. Res. Lett. 48 (23):11. doi: 10.1029/2021GL095623.
  • Guo, H., A. P. Sullivan, P. Campuzano-Jost, J. C. Schroder, F. D. Lopez-Hilfiker, J. E. Dibb, J. L. Jimenez, J. A. Thornton, S. S. Brown, A. Nenes, et al. 2016. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. J. Geophys. Res. Atmos. 121 (17):10355–76. doi: 10.1002/2016JD025311.
  • Guo, H. Y., J. M. Liu, K. D. Froyd, J. M. Roberts, P. R. Veres, P. L. Hayes, J. L. Jimenez, A. Nenes, and R. J. Weber. 2017. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmos. Chem. Phys. 17 (9):5703–19. doi: 10.5194/acp-17-5703-2017.
  • Guo, H. Y., R. Otjes, P. Schlag, A. Kiendler-Scharr, A. Nenes, and R. J. Weber. 2018. Effectiveness of ammonia reduction on control of fine particle nitrate. Atmos. Chem. Phys. 18 (16):12241–56. doi: 10.5194/acp-18-12241-2018.
  • Hennigan, C. J., J. Izumi, A. P. Sullivan, R. J. Weber, and A. Nenes. 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 15 (5):2775–90. doi: 10.5194/acp-15-2775-2015.
  • Hildemann, L. M., A. G. Russell, and G. R. Cass. 1984. Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols: Experiment vs theory. Atmos. Environ. 18 (9):1737–50. doi: 10.1016/0004-6981(84)90349-4.
  • Huang, X., R. Qiu, C. K. Chan, and P. R. Kant. 2011. Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at NH4+/SO42- =1.5. Atmos. Res. 99 (3-4):488–95. doi: 10.1016/j.atmosres.2010.11.021.
  • Huang, X., Y. Song, M. M. Li, J. F. Li, Q. Huo, X. H. Cai, T. Zhu, M. Hu, and H. S. Zhang. 2012. A high-resolution ammonia emission inventory in China. Global Biogeochem. Cycles 26 (1):GB1030. doi: 10.1029/2011GB004161.
  • Jenkin, M. E., J. C. Young, and A. R. Rickard. 2015. The MCM v3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys. 15 (20):11433–59. doi: 10.5194/acp-15-11433-2015.
  • Jia, S. G., W. H. Chen, Q. Zhang, P. Krishnan, J. Y. Mao, B. Q. Zhong, M. J. Huang, Q. Fan, J. P. Zhang, M. Chang, et al. 2020. A quantitative analysis of the driving factors affecting seasonal variation of aerosol pH in Guangzhou, China. Sci. Total Environ. 725:138228. doi: 10.1016/j.scitotenv.2020.138228.
  • Jiang, Y. Q., J. Xing, S. X. Wang, X. Chang, S. C. Liu, A. J. Shi, B. X. Liu, and S. K. Sahu. 2020. Understand the local and regional contributions on air pollution from the view of human health impacts. Front. Environ. Sci. Eng. 15 (5):88. doi: 10.1007/s11783-020-1382-2.
  • Jin, L. L. 2011. Statistical quality control environment research. Economic Research Guide 12:205–6.
  • Kaneyasu, N., H. Yoshikado, T. Mizuno, K. Sakamoto, and M. Soufuku. 1999. Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in the Kanto Plain of Japan. Atmos. Environ. 33 (11):1745–56. doi: 10.1016/S1352-2310(98)00396-3.
  • Kim, Y. J., S. N. Spak, G. R. Carmichael, N. Riemer, and C. O. Stanier. 2014. Modeled aerosol nitrate formation pathways during wintertime in the Great Lakes region of North America. JGR. Atmos. 119 (21):12420–45. doi: 10.1002/2014JD022320.
  • Li, M. M., Z. H. Zhang, Q. Yao, T. J. Wang, M. Xie, S. Li, B. L. Zhuang, and Y. Han. 2021. Nonlinear responses of particulate nitrate to NOx emission controls in the megalopolises of China. Atmos. Chem. Phys. 21 (19):15135–52. doi: 10.5194/acp-21-15135-2021.
  • Liu, L., N. F. Bei, B. Hu, J. R. Wu, S. X. Liu, X. Li, R. N. Wang, Z. R. Liu, Z. X. Shen, and G. H. Li. 2020. Wintertime nitrate formation pathways in the north China plain: Importance of N2O5 heterogeneous hydrolysis. Environ. Pollut. 266 (Pt 2):115287. doi: 10.1016/j.envpol.2020.115287.
  • Liu, M. X., X. Huang, Y. Song, T. T. Xu, S. X. Wang, Z. J. Wu, M. Hu, L. Zhang, Q. Zhang, Y. P. Pan, et al. 2018. Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmos. Chem. Phys. 18 (24):17933–43. doi: 10.5194/acp-18-17933-2018.
  • Liu, M. X., Y. Song, T. Zhou, Z. Y. Xu, C. Q. Yan, M. Zheng, Z. J. Wu, M. Hu, Y. S. Wu, and T. Zhu. 2017. Fine particle pH during severe haze episodes in northern China. Geophys. Res. Lett. 44 (10):5213–21. doi: 10.1002/2017GL073210.
  • Lu, K. D., H. Fuchs, A. Hofzumahaus, Z. F. Tan, H. C. Wang, L. Zhang, S. H. Schmitt, F. Rohrer, B. Bohn, S. Broch, et al. 2019. Fast photochemistry in wintertime haze: Consequences for pollution mitigation strategies. Environ. Sci. Technol. 53 (18):10676–84. doi: 10.1021/acs.est.9b02422.
  • Ma, J. Z., J. Tang, S. M. Li, and M. Z. Jacobson. 2003. Size distributions of ionic aerosols measured at Waliguan Observatory: Implication for nitrate gas-to-particle transfer processes in the free troposphere. J. Geophys. Res. 108 (D17):4541. doi: 10.1029/2002JD003356.
  • McDuffie, E. E., C. C. Womack, D. L. Fibiger, W. P. Dube, A. Franchin, A. M. Middlebrook, L. Goldberger, B. Lee, J. A. Thornton, A. Moravek, et al. 2019. On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah. Atmos. Chem. Phys. 19 (14):9287–308. doi: 10.5194/acp-19-9287-2019.
  • Mehra, A., Y. W. Wang, J. E. Krechmer, A. Lambe, F. Majluf, M. A. Morris, M. Priestley, T. J. Bannan, D. J. Bryant, K. L. Pereira, et al. 2020. Evaluation of the chemical composition of gas- and particle-phase products of aromatic oxidation. Atmos. Chem. Phys. 20 (16):9783–803. doi: 10.5194/acp-20-9783-2020.
  • Moya, M., A. S. Ansari, and S. N. Pandis. 2001. Partitioning of nitrate and ammonium between the gas and particulate phases during the 1997 IMADA-AVER study in Mexico City. Atmos. Environ. 35 (10):1791–804. doi: 10.1016/S1352-2310(00)00292-2.
  • Patel, K., S. Bhandari, S. Gani, P. Kumar, N. Baig, G. Habib, J. Apte, and L. H. Ruiz. 2023. Factors influencing ambient particulate matter in Delhi, India: Insights from machine learning. Aerosol Sci. Technol. 57 (6):546–61. doi: 10.1080/02786826.2023.2193237.
  • Prabhakar, G., C. L. Parworth, X. L. Zhang, H. Kim, D. E. Young, A. J. Beyersdorf, L. D. Ziemba, J. B. Nowak, T. H. Bertram, I. C. Faloona, et al. 2017. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations. Atmos. Chem. Phys. 17 (23):14747–70. doi: 10.5194/acp-17-14747-2017.
  • Ren, C. H., X. Huang, Z. L. Wang, P. Sun, X. G. Chi, Y. Ma, D. R. Zhou, J. T. Huang, Y. N. Xie, J. Gao, et al. 2021. Nonlinear response of nitrate to NOx reduction in China during the COVID-19 pandemic. Atmos. Environ. 264:118715. doi: 10.1016/j.atmosenv.2021.118715.
  • Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. Hoboken, NJ: John Wiley & Sons, Inc.
  • Shang, D. J., J. F. Peng, S. Guo, Z. J. Wu, and M. Hu. 2021. Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei Region, China. Front. Environ. Sci. Eng. 15 (2):34. doi: 10.1007/s11783-020-1326-x.
  • Shi, G., X. Lu, H. Zhang, H. Zheng, Z. Zhang, S. Chen, J. Xing, and S. Wang. 2022. Air pollutant emissions induced by rural-to-urban migration during China’s urbanization (2005–2015). Environ. Sci. Ecotechnol. 10:100166. doi: 10.1016/j.ese.2022.100166.
  • Shi, G. L., J. Xu, X. R. Shi, B. S. Liu, X. H. Bi, Z. M. Xiao, K. Chen, J. Wen, S. H. Dong, Y. Z. Tian, et al. 2019a. Aerosol pH dynamics during haze periods in an urban environment in China: Use of detailed, hourly, speciated observations to study the role of ammonia availability and secondary aerosol formation and urban environment. JGR. Atmos. 124 (16):9730–42. doi: 10.1029/2018JD029976.
  • Shi, X. R., A. Nenes, Z. M. Xiao, S. J. Song, H. F. Yu, G. L. Shi, Q. Y. Zhao, K. Chen, Y. C. Feng, and A. G. Russell. 2019b. High-resolution data sets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle partitioning. Environ. Sci. Technol. 53 (6):3048–57. doi: 10.1021/acs.est.8b06524.
  • Song, S. J., M. Gao, W. Q. Xu, J. Y. Shao, G. L. Shi, S. X. Wang, Y. X. Wang, Y. L. Sun, and M. B. McElroy. 2018. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmos. Chem. Phys. 18 (10):7423–38. doi: 10.5194/acp-18-7423-2018.
  • Tao, J., L. M. Zhang, J. J. Cao, and R. J. Zhang. 2017. A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China. Atmos. Chem. Phys. 17 (15):9485–518. doi: 10.5194/acp-17-9485-2017.
  • Tao, Y., A. Moravek, T. C. Furlani, C. E. Power, T. C. VandenBoer, R. Y. W. Chang, A. Wiacek, and C. J. Young. 2022. Acidity of size-resolved sea-salt aerosol in a coastal urban area:comparison of existing and new approaches. ACS Earth Space Chem. 6 (5):1239–49. doi: 10.1021/acsearthspacechem.1c00367.
  • Tao, Y., and J. G. Murphy. 2021. Simple framework to quantify the contributions from different factors influencing aerosol pH based on NHx phase-partitioning equilibrium. Environ. Sci. Technol. 55 (15):10310–9. doi: 10.1021/acs.est.1c03103.
  • Tian, M., Y. Liu, F. M. Yang, L. M. Zhang, C. Peng, Y. Chen, G. M. Shi, H. B. Wang, B. Luo, C. T. Jiang, et al. 2019. Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, southwest China. Environ. Pollut. 250:898–905. doi: 10.1016/j.envpol.2019.04.098.
  • Vasilakos, P., A. Russell, R. Weber, and A. Nenes. 2018. Understanding nitrate formation in a world with less sulfate. Atmos. Chem. Phys. 18 (17):12765–75. doi: 10.5194/acp-18-12765-2018.
  • Wang, H. C., K. D. Lu, X. R. Chen, Q. D. Zhu, Q. Chen, S. Guo, M. Q. Jiang, X. Li, D. J. Shang, Z. F. Tan, et al. 2017a. High N2O5 concentrations observed in urban Beijing: Implications of a large nitrate formation pathway. Environ. Sci. Technol. Lett. 4 (10):416–20. doi: 10.1021/acs.estlett.7b00341.
  • Wang, X. F., Y. P. Zhang, H. Chen, X. Yang, J. M. Chen, and F. H. Geng. 2009. Particulate nitrate formation in a highly polluted urban area: A case study by single-particle mass spectrometry in Shanghai. Environ. Sci. Technol. 43 (9):3061–6. doi: 10.1021/es8020155.
  • Wang, Y., Q. Q. Zhang, K. He, Q. Zhang, and L. Chai. 2013. Sulfate-nitrate-ammonium aerosols over China: Response to 2000-2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia. Atmos. Chem. Phys. 13 (5):2635–52. doi: 10.5194/acp-13-2635-2013.
  • Wang, Z., W. H. Wang, Y. J. Tham, Q. Y. Li, H. Wang, L. Wen, X. F. Wang, and T. Wang. 2017b. Fast heterogeneous N2O5 uptake and ClNO2 production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain. Atmos. Chem. Phys. 17 (20):12361–78. doi: 10.5194/acp-17-12361-2017.
  • Wen, L., L. K. Xue, X. F. Wang, C. H. Xu, T. S. Chen, L. X. Yang, T. Wang, Q. Z. Zhang, and W. X. Wang. 2018. Summertime fine particulate nitrate pollution in the North China Plain: Increasing trends, formation mechanisms and implications for control policy. Atmos. Chem. Phys. 18 (15):11261–75. doi: 10.5194/acp-18-11261-2018.
  • Wu, C., L. Liu, G. Wang, S. Zhang, G. Li, S. Lv, J. Li, F. Wang, J. Meng, and Y. Zeng. 2021. Important contribution of N2O5 hydrolysis to the daytime nitrate in Xi’an, China during haze periods: Isotopic analysis and WRF-Chem model simulation. Environ. Pollut. 288:117712. doi: 10.1016/j.envpol.2021.117712.
  • Wu, C., S. Zhang, G. H. Wang, S. J. Lv, D. P. Li, L. Liu, J. J. Li, S. J. Liu, W. Du, J. J. Meng, et al. 2020. Efficient heterogeneous formation of ammonium nitrate on the saline mineral particle surface in the atmosphere of East Asia during dust storm periods. Environ. Sci. Technol. 54 (24):15622–30. doi: 10.1021/acs.est.0c04544.
  • Wu, Z. J., Y. Wang, T. Y. Tan, Y. S. Zhu, M. R. Li, D. J. Shang, H. C. Wang, K. D. Lu, S. Guo, L. M. Zeng, et al. 2018. Aerosol liquid water driven by anthropogenic inorganic salts: Implying its key role in haze formation over the North China Plain. Environ. Sci. Technol. Lett. 5 (3):160–6. doi: 10.1021/acs.estlett.8b00021.
  • Xie, X. D., J. L. Hu, M. M. Qin, S. Guo, M. Hu, H. L. Wang, S. R. Lou, J. Y. Li, J. J. Sun, X. Li, et al. 2022. Modeling particulate nitrate in China: Current findings and future directions. Environ. Int. 166:107369. doi: 10.1016/j.envint.2022.107369.
  • Xu, L., and J. E. Penner. 2012. Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmos. Chem. Phys. 12 (20):9479–504. doi: 10.5194/acp-12-9479-2012.
  • Xu, Q. C., S. X. Wang, J. K. Jiang, N. Bhattarai, X. X. Li, X. Chang, X. H. Qiu, M. Zheng, Y. Hua, and J. M. Hao. 2019a. Nitrate dominates the chemical composition of PM2.5 during haze event in Beijing, China. Sci. Total Environ. 689:1293–303. doi: 10.1016/j.scitotenv.2019.06.294.
  • Xu, Z. Y., M. X. Liu, M. S. Zhang, Y. Song, S. X. Wang, L. Zhang, T. T. Xu, T. T. Wang, C. Q. Yan, T. Zhou, et al. 2019b. High efficiency of livestock ammonia emission controls in alleviating particulate nitrate during a severe winter haze episode in northern China. Atmos. Chem. Phys. 19 (8):5605–13. doi: 10.5194/acp-19-5605-2019.
  • Xue, C. Y., C. L. Zhang, C. Ye, P. F. Liu, V. Catoire, G. Krysztofiak, H. Chen, Y. G. Ren, X. X. Zhao, J. H. Wang, et al. 2020. HONO budget and its role in nitrate formation in the rural North China Plain. Environ. Sci. Technol. 54 (18):11048–57. doi: 10.1021/acs.est.0c01832.
  • Xue, J., Z. B. Yuan, A. K. H. Lau, and J. Z. Yu. 2014. Insights into factors affecting nitrate in PM2.5 in a polluted high NOx environment through hourly observations and size distribution measurements. JGR. Atmos. 119 (8):4888–902. doi: 10.1002/2013JD021108.
  • Yan, Y. H., S. S. Wang, J. Zhu, Y. L. Guo, G. Q. Tang, B. X. Liu, X. X. An, Y. S. Wang, and B. Zhou. 2021. Vertically increased NO3 radical in the nocturnal boundary layer. Sci. Total Environ. 763:142969. doi: 10.1016/j.scitotenv.2020.142969.
  • Yun, H., W. H. Wang, T. Wang, M. Xia, C. Yu, Z. Wang, S. C. N. Poon, D. L. Yue, and Y. Zhou. 2018. Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China. Atmos. Chem. Phys. 18 (23):17515–27. doi: 10.5194/acp-18-17515-2018.
  • Zhai, S. X., D. J. Jacob, X. Wang, Z. R. Liu, T. X. Wen, V. Shah, K. Li, J. M. Moch, K. H. Bates, S. J. Song, et al. 2021. Control of particulate nitrate air pollution in China. Nat. Geosci. 14 (6):389–95. doi: 10.1038/s41561-021-00726-z.
  • Zhai, S. X., D. J. Jacob, X. Wang, L. Shen, K. Li, Y. Z. Zhang, K. Gui, T. L. Zhao, and H. Liao. 2019. Fine particulate matter (PM2.5) trends in China, 2013-2018: Separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 19 (16):11031–41. doi: 10.5194/acp-19-11031-2019.
  • Zhang, L., T. F. Xu, Z. F. Pi, M. Z. Zheng, F. R. Song, and Z. Q. Liu. 2019. Effects of the ambient fine particulate matter (PM2.5) exposure on urinary metabolic profiles in rats using UPLC-Q-TOF-MS. Chin. Chem. Lett. 30 (1):90–4. doi: 10.1016/j.cclet.2017.11.019.
  • Zhang, Y. H., Y. J. Chen, Y. Y. Song, C. Dong, and Z. W. Cai. 2021a. Atmospheric pressure gas chromatography-tandem mass spectrometry analysis of fourteen emerging polycyclic aromatic sulfur heterocycles in PM2.5. Chin. Chem. Lett. 32 (2):801–4. doi: 10.1016/j.cclet.2020.07.022.
  • Zhang, Z. Y., Z. Jiang, H. Guan, Y. Liang, N. J. Zheng, and W. Guo. 2021b. Isotopic evidence for the high contribution of wintertime photochemistry to particulate nitrate formation in Northern China. JGR. Atmos. 126 (22):e2021JD035324. doi: 10.1029/2021JD035324.
  • Zhao, Q. Y., A. Nenes, H. F. Yu, S. J. Song, Z. M. Xiao, K. Chen, G. L. Shi, Y. C. Feng, and A. G. Russell. 2020. Using high-temporal-resolution ambient data to investigate gas-particle partitioning of ammonium over different seasons. Environ. Sci. Technol. 54 (16):9834–43. doi: 10.1021/acs.est.9b07302.
  • Zheng, B., D. Tong, M. Li, F. Liu, C. P. Hong, G. N. Geng, H. Y. Li, X. Li, L. Q. Peng, J. Qi, et al. 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18 (19):14095–111. doi: 10.5194/acp-18-14095-2018.
  • Zheng, G. J., F. K. Duan, H. Su, Y. L. Ma, Y. Cheng, B. Zheng, Q. Zhang, T. Huang, T. Kimoto, D. Chang, et al. 2015. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 15 (6):2969–83. doi: 10.5194/acp-15-2969-2015.
  • Zheng, Y., T. Xue, H. Zhao, and Y. Lei. 2022. Increasing life expectancy in China by achieving its 2025 air quality target. Environ. Sci. Ecotechnol. 12:100203. doi: 10.1016/j.ese.2022.100203.
  • Zhou, M., W. Nie, L. P. Qiao, D. D. Huang, S. H. Zhu, S. R. Lou, H. L. Wang, Q. Wang, S. K. Tao, P. Sun, et al. 2022. Elevated formation of particulate nitrate from N2O5 hydrolysis in the Yangtze River Delta Region from 2011 to 2019. Geophys. Res. Lett. 49 (9):e2021GL097393. doi: 10.1029/2021GL097393.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.