1,230
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

The microphysics of surrogates of exhaled aerosols from the upper respiratory tract

ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 461-474 | Received 22 Sep 2023, Accepted 18 Dec 2023, Published online: 17 Jan 2024

References

  • Alexander, R. W., J. Tian, A. E. Haddrell, H. P. Oswin, E. Neal, D. A. Hardy, M. Otero-Fernandez, J. F. S. Mann, T. A. Cogan, A. Finn, et al. 2022. Mucin transiently sustains coronavirus infectivity through heterogenous changes in phase morphology of evaporating aerosol. Viruses 14 (9):1856. doi:10.3390/v14091856.
  • Asadi, S., A. S. Wexler, C. D. Cappa, S. Barreda, N. M. Bouvier, and W. D. Ristenpart. 2019. Aerosol emission and superemission during human speech increase with voice loudness. Sci. Rep. 9 (1):2348. doi:10.1038/s41598-019-38808-z.
  • Bagheri, G., O. Schlenczek, L. Turco, B. Thiede, K. Stieger, J. M. Kosub, S. Clauberg, M. L. Pöhlker, C. Pöhlker, J. Moláček, et al. 2023. Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission. J. Aerosol Sci. 168:106102. doi:10.1016/j.jaerosci.2022.106102.
  • Bardow, A., D. Moe, B. Nyvad, and B. Nauntofte. 2000. The buffer capacity and buffer systems of human whole saliva measured without loss of CO2. Arch. Oral Biol. 45 (1):1–12. doi:10.1016/S0003-9969(99)00119-3.
  • Bredberg, A., J. Gobom, A. C. Almstrand, P. Larsson, K. Blennow, A. Carin Olin, and E. Mirgorodskaya. 2012. Exhaled endogenous particles contain lung proteins. Clin. Chem. 58 (2):431–40. doi:10.1373/clinchem.2011.169235.
  • Chauncey, H. H. 1955. The chemical composition of human saliva. PhD thesis, Boston University. https://hdl.handle.net/2144/8548.
  • Chauncey, H. H., D. M. Levine, G. Kass, H. Shwachman, B. L. Henriques, and L. L. Kulczyeki. 1962. Composition of human saliva parotid gland secretory rate and electrolyte concentration in children with cystic fibrosis. Arch. Oral Biol. 7 (6):707–13. doi:10.1016/0003-9969(62)90119-x.
  • Dabisch, P. A., S. P. Wood, B. P. Holland, J. A. Boydston, K. E. Beck, B. Green, and J. Biryukov. 2022. Comparison of the survival of different isolates of SARS-CoV-2 in evaporating aerosols. Aerosol Sci. Technol. 56 (12):1146–55. doi:10.1080/02786826.2022.2128712.
  • Dabisch, P., M. Schuit, A. Herzog, K. Beck, S. Wood, M. Krause, D. Miller, W. Weaver, D. Freeburger, I. Hooper, et al. 2021. The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Sci. Technol. 55 (2):142–53. doi:10.1080/02786826.2020.1829536.
  • Davies, J. F., C. L. Price, J. Choczynski, and R. K. Kohli. 2021. Hygroscopic growth of simulated lung fluid aerosol particles under ambient environmental conditions. Chem Commun (Camb) 57 (26):3243–6. doi:10.1039/d1cc00066g.
  • Fernandez, M. O., R. J. Thomas, H. Oswin, A. E. Haddrell, and J. P. Reid. 2020. Transformative approach to investigate the microphysical factors influencing airborne transmission of pathogens. Appl. Environ. Microbiol. 86 (23):e01543-20–e01543-20. doi:10.1128/AEM.01543-20.
  • Fernandez, M. O., R. J. Thomas, N. J. Garton, A. Hudson, A. Haddrell, and J. P. Reid. 2019. Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. J. R Soc. Interface 16 (150):20180779. doi:10.1098/rsif.2018.0779.
  • Fernstrom, A., and M. Goldblatt. 2013. Aerobiology and its role in the transmission of infectious diseases. J. Pathog. 2013:493960–13. doi:10.1155/2013/493960.
  • Gregson, F. K., J. F. Robinson, R. E. Miles, C. P. Royall, and J. P. Reid. 2019. Drying kinetics of salt solution droplets: Water evaporation rates and crystallization. J. Phys. Chem. B 123 (1):266–76. doi:10.1021/acs.jpcb.8b09584.
  • Groth, R., L. T. Cravigan, S. Niazi, Z. Ristovski, and G. R. Johnson. 2021. In situ measurements of human cough aerosol hygroscopicity. J. R Soc. Interface 18 (178):20210209. doi:10.1098/rsif.2021.0209.
  • Groth, R., S. Niazi, K. Spann, G. R. Johnson, and Z. Ristovski. 2023. Physicochemical Characterization of porcine respiratory aerosol and considerations for future aerovirology. PNAS Nexus. 2 (3):pgad087. doi:10.1093/pnasnexus/pgad087.
  • Haddrell, A. E., J. F. Davies, R. E. Miles, J. P. Reid, L. A. Dailey, and D. Murnane. 2014. Dynamics of aerosol size during inhalation: hygroscopic growth of commercial nebulizer formulations. Int. J. Pharm. 463 (1):50–61. doi:10.1016/j.ijpharm.2013.12.048.
  • Haddrell, A., G. Rovelli, D. Lewis, T. Church, and J. Reid. 2019. Identifying time-dependent changes in the morphology of an individual aerosol particle from its light scattering pattern. Aerosol Sci. Technol. 53 (11):1334–51. doi:10.1080/02786826.2019.1661351.
  • Haddrell, A., M. Otero-Fernandez, H. Oswin, T. Cogan, J. Bazire, J. Tian, R. Alexander, J. F. S. Mann, D. Hill, A. Finn, et al. 2023. Differences in airborne stability of SARS-CoV-2 variants of concern is impacted by alkalinity of surrogates of respiratory aerosol. J. R Soc. Interface 20 (203):20230062. doi:10.1098/rsif.2023.0062.
  • Hardy, D. A., J. Archer, P. Lemaitre, R. Vehring, J. P. Reid, and J. S. Walker. 2021. High time resolution measurements of droplet evaporation kinetics and particle crystallisation. Phys. Chem. Chem. Phys. 23 (34):18568–79. doi:10.1039/d1cp02840e.
  • Hardy, D. A., J. F. Robinson, T. G. Hilditch, E. Neal, P. Lemaitre, J. S. Walker, and J. P. Reid. 2023. Accurate measurements and simulations of the evaporation and trajectories of individual solution droplets. J. Phys. Chem. B 127 (15):3416–30. doi:10.1021/acs.jpcb.2c08909.
  • Harrison, J., B. Saccente-Kennedy, C. M. Orton, L. P. McCarthy, J. Archer, H. E. Symons, A. Szczepanska, N. A. Watson, W. J. Browne, B. Moseley, et al. 2023. Emission rates, size distributions, and generation mechanism of oral respiratory droplets. Aerosol Sci. Technol. 57 (3):187–99. doi:10.1080/02786826.2022.2158778.
  • Huynh, E., A. Olinger, D. Woolley, R. K. Kohli, J. M. Choczynski, J. F. Davies, K. Lin, L. C. Marr, and R. D. Davis. 2022. Evidence for a semisolid phase state of aerosols and droplets relevant to the airborne and surface survival of pathogens. Proc. Natl. Acad. Sci. U S A 119 (4):e2109750119. doi:10.1073/pnas.2109750119.
  • Jayaweera, M., H. Perera, B. Gunawardana, and J. Manatunge. 2020. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res. 188:109819. doi:10.1016/j.envres.2020.109819.
  • Johnson, G. R., L. Morawska, Z. D. Ristovski, M. Hargreaves, K. Mengersen, C. Y. H. Chao, M. P. Wan, Y. Li, X. Xie, D. Katoshevski, et al. 2011. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42 (12):839–51. doi:10.1016/j.jaerosci.2011.07.009.
  • Kallapur, B., K. Ramalingam, A. Mujib, A. Sarkar, and S. Sethuraman. 2013. Quantitative estimation of sodium, potassium and total protein in saliva of diabetic smokers and nonsmokers: A novel study. J. Nat. Sci. Biol. Med. 4 (2): 341–45. doi:10.4103/0976-9668.117006.
  • Kesimer, M., A. A. Ford, A. Ceppe, G. Radicioni, R. Cao, C. W. Davis, C. M. Doerschuk, N. E. Alexis, W. H. Anderson, A. G. Henderson, et al. 2017. Airway mucin concentration as a marker of chronic bronchitis. N Engl. J. Med. 377 (10):911–22. doi:10.1056/nejmoa1701632.
  • Klein, L. K., B. Luo, N. Bluvshtein, U. K. Krieger, A. Schaub, I. Glas, S. C. David, K. Violaki, G. Motos, M. O. Pohl, et al. 2022. Expiratory aerosol PH is determined by indoor room trace gases and particle size. Proc. Natl. Acad. Sci. U S A 119 (39):e2212140119. doi:10.1073/pnas.2212140119.
  • Larsson, P., B. Bake, A. Wallin, O. Hammar, A. C. Almstrand, M. Lärstad, E. Ljungström, E. Mirgorodskaya, and A. C. Olin. 2017. The effect of exhalation flow on endogenous particle emission and phospholipid composition. Respir. Physiol. Neurobiol. 243 (May):39–46. doi:10.1016/j.resp.2017.05.003.
  • Lin, K., and L. C. Marr. 2020. Humidity-dependent decay of viruses, but not bacteria, in aerosols and droplets follows disinfection kinetics. Environ. Sci. Technol. 54 (2):1024–32. doi:10.1021/acs.est.9b04959.
  • Lin, K., C. R. Schulte, and L. C. Marr. 2020. Survival of MS2 and Φ6 viruses in droplets as a function of relative humidity, PH, and salt, protein, and surfactant concentrations. PLoS One. 15 (12):e0243505. doi:10.1371/journal.pone.0243505.
  • Luo, B., A. Schaub, I. Glas, L. K. Klein, S. C. David, N. Bluvshtein, K. Violaki, G. Motos, M. O. Pohl, W. Hugentobler, et al. 2023. Expiratory aerosol PH: The overlooked driver of airborne virus inactivation. Environ. Sci. Technol. 57 (1):486–97. doi:10.1021/acs.est.2c05777.
  • Marsh, A., G. Rovelli, R. E. Miles, and J. P. Reid. 2019. Complexity of measuring and representing the hygroscopicity of mixed component aerosol. J. Phys. Chem. A 123 (8):1648–60. doi:10.1021/acs.jpca.8b11623.
  • Morawska, L., G. R. Johnson, Z. D. Ristovski, M. Hargreaves, K. Mengersen, S. Corbett, C. Y. Chao, Y. Li, and D. Katoshevski. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40 (3):256–69. doi:10.1016/j.jaerosci.2008.11.002.
  • Oswin, H. P., A. E. Haddrell, C. Hughes, M. Otero-Fernandez, R. J. Thomas, and J. P. Reid. 2023. Oxidative stress contributes to bacterial airborne loss of viability. Microbiol. Spectr. 11 (2):e03347-22. doi:10.1128/spectrum.03347-22.
  • Oswin, H. P., A. E. Haddrell, M. Otero-Fernandez, J. F. S. Mann, T. A. Cogan, T. G. Hilditch, J. Tian, D. A. Hardy, D. J. Hill, A. Finn, et al. 2022. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc. Natl. Acad. Sci. U. S. A. 119 (27):e2200109119. doi:10.1073/pnas.2200109119.
  • Oswin, H. P., A. E. Haddrell, M. Otero-Fernandez, T. A. Cogan, J. F. S. Mann, C. H. Morley, D. J. Hill, A. D. Davidson, A. Finn, R. J. Thomas, et al. 2021. Measuring stability of virus in aerosols under varying environmental conditions. Aerosol Sci. Technol. 55 (12):1315–20. doi:10.1080/02786826.2021.1976718.
  • Pöhlker, M. L., O. O. Krüger, J.-D. Förster, T. Berkemeier, W. Elbert, J. Fröhlich-Nowoisky, U. Pöschl, et al. 2021. Respiratory aerosols and droplets in the transmission of infectious diseases. doi:10.48550/arxiv.2103.01188.
  • Rose, M. C., and J. A. Voynow. 2006. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86 (1):245–78. doi:10.1152/physrev.00010.2005.
  • Rovelli, G., R. E. Miles, J. P. Reid, and S. L. Clegg. 2016. Accurate measurements of aerosol hygroscopic growth over a wide range in relative humidity. J. Phys. Chem. A 120 (25):4376–88. doi:10.1021/acs.jpca.6b04194.
  • Schuit, M., S. Ratnesar-Shumate, J. Yolitz, G. Williams, W. Weaver, B. Green, D. Miller, M. Krause, K. Beck, S. Wood, et al. 2020. Airborne SARS-CoV-2 is rapidly inactivated by simulated sunlight. J. Infect. Dis. 222 (4):564–71. doi:10.1093/infdis/jiaa334.
  • Tang, J. W. 2009. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 6:S737–46. doi:10.1098/rsif.2009.0227.focus.
  • Tang, J. W., R. Tellier, and Y. Li. 2022. Hypothesis: All respiratory viruses (including SARS-CoV-2) are aerosol-transmitted. Indoor Air. 32 (1):e12937. doi:10.1111/ina.12937.
  • Thaysen, J. H., N. A. Thorn, and I. L. Schwartz. 1954. Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva. Am. J. Physiol. 178 (1):155–9. doi:10.1152/ajplegacy.1954.178.1.155.
  • Vejerano, E. P., and L. C. Marr. 2018. Physico-chemical characteristics of evaporating respiratory fluid droplets. J. R Soc. Interface 15 (139):20170939. doi:10.1098/rsif.2017.0939.
  • Vuorinen, V., M. Aarnio, M. Alava, V. Alopaeus, N. Atanasova, M. Auvinen, N. Balasubramanian, H. Bordbar, P. Erästö, R. Grande, et al. 2020. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci. 130 (June):104866. doi:10.1016/j.ssci.2020.104866.
  • Walker, J. S., J. Archer, F. K. A. Gregson, S. E. S. Michel, B. R. Bzdek, and J. P. Reid. 2021. Accurate representations of the microphysical processes occurring during the transport of exhaled aerosols and droplets. ACS Cent. Sci. 7 (1):200–9. doi:10.1021/acscentsci.0c01522.
  • Wang, C. C., K. A. Prather, J. Sznitman, J. L. Jimenez, S. S. Lakdawala, Z. Tufekci, and L. C. Marr. 2021. Airborne transmission of respiratory viruses. Science 373:eabd9149. doi:10.1126/science.abd9149.
  • Wardzala, C. L., A. M. Wood, D. M. Belnap, and J. R. Kramer. 2022. Mucins inhibit coronavirus infection in a glycan-dependent manner. ACS Cent. Sci. 8 (3):351–60. doi:10.1021/acscentsci.1c01369.
  • Woo, M. H., Y. M. Hsu, C. Y. Wu, B. Heimbuch, and J. Wander. 2010. Method for contamination of filtering facepiece respirators by deposition of MS2 viral aerosols. J. Aerosol Sci. 41 (10):944–52. doi:10.1016/j.jaerosci.2010.07.003.