296
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Air change rate and SARS-CoV-2 exposure in hospitals and residences: A meta-analysis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 217-243 | Received 23 Jun 2023, Accepted 16 Jan 2024, Published online: 16 Feb 2024

References

  • Aganovic, A., Y. Bi, G. Cao, F. Drangsholt, J. Kurnitski, and P. Wargocki. 2021. Estimating the impact of indoor relative humidity on SARS-CoV-2 airborne transmission risk using a new modification of the wells-riley model. Build. Environ. 205:108278. doi: 10.1016/j.buildenv.2021.108278.
  • Ahn, J. Y., S. An, Y. Sohn, Y. Cho, J. H. Hyun, Y. J. Baek, M. H. Kim, S. J. Jeong, J. H. Kim, N. S. Ku, et al. 2020. Environmental contamination in the isolation rooms of COVID-19 patients with severe pneumonia requiring mechanical ventilation or high-flow oxygen therapy. J. Hosp. Infect. 106 (3):570–6. doi: 10.1016/j.jhin.2020.08.014.32828864.
  • Ang, A. X., I. Luhung, B. A. Ahidjo, D. I. Drautz‐Moses, P. A. Tambyah, C. K. Mok, K. J. Lau, S. M. Tham, J. J. H. Chu, D. M. Allen, et al. 2022. Airborne SARS‐CoV‐2 surveillance in hospital environment using high‐flowrate air samplers and its comparison to surface sampling. Indoor Air. 32 (1): E 12930. doi: 10.1111/ina.12930.
  • ASHRAE. 2014. ASHRAE position document on airborne infectious diseases. Accessed November 19, 2023. https://www.rpfedder.com/wp-content/uploads/2019/10/ASHRAE-Position-Document-Airborne-Infectious-Diseases-2020-Reaffirmed-004.pdf.
  • ASHRAE. 2020. ANSI/ASHRAE/ASHE standard 170-2017, ventilation of health care facilities. Accessed November 19, 2023. https://www.ashrae.org/technical-resources/standards-and-guidelines/standards-addenda/ansi-ashrae-ashe-standard-170-2017-ventilation-of-health-care-facilities.
  • ASHRAE. 2022. ANSI/ASHRAE standard 62.1-2022, ventilation and acceptable indoor air quality. Accessed November 19, 2023. https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2.
  • ASHRAE. 2023. ASHRAE terminology. Accessed November 13, 2023. https://www.ashrae.org/technical-resources/authoring-tools/terminology.
  • Azimi, P., and B. Stephens. 2013. Hvac filtration for controlling infectious airborne disease transmission in indoor environments: Predicting risk reductions and operational costs. Build. Environ. 70:150–60. doi: 10.1016/j.buildenv.2013.08.025.
  • Azizi Jalilian, F., A. Poormohammadi, A. Teimoori, N. Ansari, Z. Tarin, F. Ghorbani Shahna, G. Azarian, M. Leili, M. Samarghandi, M. Motaghed, et al. 2022. Evaluation of SARS-CoV-2 in indoor air of sina and shahid beheshti hospitals and patients’ houses. Food Environ. Virol. 14 (2):190–8. doi: 10.1007/s12560-022-09515-2.
  • Baboli, Z., N. Neisi, A. A. Babaei, M. Ahmadi, A. Sorooshian, Y. T. Birgani, and G. Goudarzi. 2021. On the airborne transmission of SARS-CoV-2 and relationship with indoor conditions at a hospital. Atmos Environ. 261:118563. doi: 10.1016/j.atmosenv.2021.118563.
  • Barbieri, P., L. Zupin, S. Licen, V. Torboli, S. Semeraro, S. Cozzutto, J. Palmisani, A. Di Gilio, G. De Gennaro, F. Fontana, et al. 2021. Molecular detection of SARS-CoV-2 from indoor air samples in environmental monitoring needs adequate temporal coverage and infectivity assessment. Environ. Res. 198:111200. doi: 10.1016/j.envres.2021.111200.
  • Ben-Shmuel, A., T. Brosh-Nissimov, I. Glinert, E. Bar-David, A. Sittner, R. Poni, R. Cohen, H. Achdout, H. Tamir, Y. Yahalom-Ronen, et al. 2020. Detection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilities. Clin. Microbiol. Infect. 26 (12):1658–62. doi: 10.1016/j.cmi.2020.09.004.
  • Binder, R. A., N. A. Alarja, E. R. Robie, K. E. Kochek, L. Xiu, L. Rocha-Melogno, A. Abdelgadir, S. V. Goli, A. S. Farrell, K. K. Coleman, et al. 2020. Environmental and aerosolized severe acute respiratory syndrome coronavirus 2 among hospitalized coronavirus disease 2019 patients. J. Infect. Dis. 222 (11):1798–806. doi: 10.1093/infdis/jiaa575.
  • Borro, L., L. Mazzei, M. Raponi, P. Piscitelli, A. Miani, and A. Secinaro. 2021. The role of air conditioning in the diffusion of SARS-CoV-2 in indoor environments: A first computational fluid dynamic model, based on investigations performed at the vatican state children’s hospital. Environ. Res. 193:110343. doi: 10.1016/j.envres.2020.110343.
  • Brelih, N., and O. Seppänen. 2011. Ventilation rates and IAQ in European standards and national regulations. In The proceedings of the 32nd AIVC conference and 1st TightVent conference in Brussels, 12–3.
  • Cai, T., L. Parast, and L. Ryan. 2010. Meta‐analysis for rare events. Stat. Med. 29 (20):2078–89. doi: 10.1002/sim.3964.
  • Cai, Y., X. Wu, Y. Zhang, J. Xia, M. Li, Y. Feng, X. Yu, J. Duan, X. Weng, and Y. Chen. 2020. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Contamination in Air and Environment in Temporary COVID-19 ICU Wards. doi: 10.21203/rs.3.rs-21384/v1.
  • Chen, G. M., J. J. Ji, S. Jiang, Y. Q. Xiao, R. L. Zhang, D. N. Huang, H. Liu, and S. Y. Yu. 2020. Detecting environmental contamination of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in isolation wards and fever clinics. Biomed. Environ. Sci. 33 (12):943–7. doi: 10.3967/bes2020.130.
  • Cheng, C.-C., S.-C. Wong, W.-M. Chan, Y.-C. So, H.-K. Chen, C.-Y. Yip, K.-H. Chan, H. Chu, W.-H. Chung, S. Sridhar, et al. 2020b. Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infect. Control Hosp. Epidemiol. 41 (11):1258–65. doi: 10.1017/ice.2020.282.32507114.
  • Cheng, V. C. C., S.-C. Wong, J. H. K. Chen, C. C. Y. Yip, V. W. M. Chuang, O. T. Y. Tsang, S. Sridhar, J. F. W. Chan, P.-L. Ho, and K.-Y. Yuen. 2020a. Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect. Control Hosp. Epidemiol. 41 (5):493–8. doi: 10.1017/ice.2020.58.32131908.
  • Chia, P. Y., K. K. Coleman, Y. K. Tan, S. W. X. Ong, M. Gum, S. K. Lau, X. F. Lim, A. S. Lim, S. Sutjipto, P. H. Lee, et al. 2020. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat. Commun. 11 (1):2800. doi: 10.1038/s41467-020-16670-2.
  • CDC. 2019. Guidelines for environmental infection control in health-care facilities. Accessed November 19, 2023. https://www.cdc.gov/infectioncontrol/pdf/guidelines/environmental-guidelines-P.pdf.
  • CDC. 2023a. COVID-19 overview and infection prevention and control priorities in non-U.S. Healthcare settings. Accessed November 19, 2023. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html.
  • CDC. 2023b. How to protect yourself and others. Accessed November 19, 2023. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/prevention.html.
  • Choi, M., and A. Hohl. 2023. Investigating factors in indoor transmission of respiratory disease through agent‐based modeling. Transactions in GIS 27 (6):1794–827. doi: 10.1111/tgis.13099.
  • Coleman, K. K., D. J. W. Tay, K. S. Tan, S. W. X. Ong, T. S. Than, M. H. Koh, Y. Q. Chin, H. Nasir, T. M. Mak, J. J. H. Chu, et al. 2021. Viral load of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory aerosols emitted by patients with coronavirus disease 2019 (COVID-19) while breathing, talking, and singing. Clin. Infect. Dis. 74 (10):1722–8. doi: 10.1093/cid/ciab691.
  • Commission, T. L. C. 2023. Proposed non-infectious air delivery rates (NADR) for reducing exposure to airborne respiratory infectious diseases. Accessed November 19, 2023. https://covid19commission.org/commpub/lancet-covid-commission-tf-report-nov-2022.
  • Correia, Gil., Correia, G., L. Rodrigues, M. Afonso, M. Mota, J. Oliveira, R. Soares, A. L. Tomás, A. Reichel, P. M. Silva, J. J. Costa, et al. 2022. SARS-CoV-2 air and surface contamination in residential settings. Sci. Rep. 12 (1):18058. doi: 10.1038/s41598-022-22679-y.
  • Cortez, P., and A. d J. R. Morais. 2007. A data mining approach to predict forest fires using meteorological data. NEVES, José Maia ; SANTOS, Manuel Filipe ; MACHADO, José Manuel, eds. - “New trends in artificial intelligence: Proceedings of the 13th Portuguese Conference on Artificial Intelligence (EPIA 2007), Guimarães, Portugal, 2007", [Lisboa] Associação Portuguesa para a Inteligência Artificial (APPIA), ISBN 978-989-95618-0-9, 512–523. https://hdl.handle.net/1822/8039.
  • Cullen, A. C., and H. C. Frey. 1999. Probabilistic techniques in exposure assessment: A handbook for dealing with variability and uncertainty in models and inputs. New York, NY: Springer Science & Business.
  • Declementi, M., A. Godono, I. Mansour, N. Milanesio, G. Garzaro, M. Clari, L. Fedele, V. Passini, C. Bongiorno, and E. Pira. 2020. Assessment of air and surfaces contamination in a COVID-19 non-intensive care unit. Med. Lav. 111 (5):372–8. doi: 10.23749/mdl.v111i5.9991.
  • de Man, P., M. A. Ortiz, P. M. Bluyssen, S. J. de Man, M.-J. Rentmeester, M. van der Vliet, E.-J. Wils, and D. S. Ong. 2022. Airborne SARS-CoV-2 in home and hospital environments investigated with a high-powered air sampler. J. Hosp. Infect. 119:126–31. doi: 10.1016/j.jhin.2021.10.018.
  • Del Real, Á., A. Expósito, L. Ruiz-Azcona, M. Santibáñez, and I. Fernández-Olmo. 2022. SARS-CoV-2 surveillance in indoor and outdoor size-segregated aerosol samples. Environ. Sci. Pollut. Res. Int. 29 (42):62973–83. doi: 10.1007/s11356-022-20237-7.
  • de Oliveira, P. M., L. C. Mesquita, S. Gkantonas, A. Giusti, and E. Mastorakos. 2021. Evolution of spray and aerosol from respiratory releases: Theoretical estimates for insight on viral transmission. Proc. Math. Phys. Eng. Sci. 477 (2245):20200584. doi: 10.1098/rspa.2020.0584.
  • Demokritou, P., T. Gupta, S. Ferguson, and P. Koutrakis. 2002. Development and laboratory performance evaluation of a personal cascade impactor. J. Air Waste Manag. Assoc. 52 (10):1230–7. doi: 10.1080/10473289.2002.10470855.
  • Dietz, L., D. A. Constant, M. Fretz, P. F. Horve, A. Olsen-Martinez, J. Stenson, A. Wilkes, R. G. Martindale, W. B. Messer, and K. G. Van Den Wymelenberg. 2021. Exploring integrated environmental viral surveillance of indoor environments: A comparison of surface and bioaerosol environmental sampling in hospital rooms with COVID-19 patients. medRxiv:2021.2003. 2026.21254416. doi: 10.1101/2021.03.26.21254416.
  • Ding, S., Z. W. Teo, M. P. Wan, and B. F. Ng. 2021. Aerosols from speaking can linger in the air for up to nine hours. Build. Environ. 205:108239. doi: 10.1016/j.buildenv.2021.108239.
  • Dinoi, A., M. Feltracco, D. Chirizzi, S. Trabucco, M. Conte, E. Gregoris, E. Barbaro, G. La Bella, G. Ciccarese, F. Belosi, et al. 2022. A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: Implication for airborne transmission. Sci. Total Environ. 809:151137. doi: 10.1016/j.scitotenv.2021.151137.
  • Döhla, M., B. Schulte, G. Wilbring, B. M. Kümmerer, C. Döhla, E. Sib, E. Richter, P. F. Ottensmeyer, A. Haag, S. Engelhart, et al. 2022. SARS-CoV-2 in environmental samples of quarantined households. Viruses 14 (5):1075. doi: 10.3390/v14051075.
  • Dowell, D., W. G. Lindsley, and J. T. Brooks. 2022. Reducing SARS-CoV-2 in shared indoor air. Jama 328 (2):141–2. doi: 10.1001/jama.2022.9970.
  • Dubey, A., G. Kotnala, T. K. Mandal, S. C. Sonkar, V. K. Singh, S. A. Guru, A. Bansal, M. Irungbam, F. Husain, B. Goswami, et al. 2021. Evidence of the presence of SARS‐CoV‐2 virus in atmospheric air and surfaces of a dedicated COVID hospital. J. Med. Virol. 93 (9):5339–49. doi: 10.1002/jmv.27029.
  • Dumont-Leblond, N., M. Veillette, L. Bhérer, K. Boissoneault, S. Mubareka, L. Yip, M.-E. Dubuis, Y. Longtin, P. Jouvet, A. McGeer, et al. 2021. Positive no-touch surfaces and undetectable SARS-CoV-2 aerosols in long-term care facilities: An attempt to understand the contributing factors and the importance of timing in air sampling campaigns. Am. J. Infect. Control. 49 (6):701–6. doi: 10.1016/j.ajic.2021.02.004.
  • Dumont-Leblond, N., M. Veillette, S. Mubareka, L. Yip, Y. Longtin, P. Jouvet, B. Paquet Bolduc, S. Godbout, G. Kobinger, A. McGeer, et al. 2020. Low incidence of airborne SARS-CoV-2 in acute care hospital rooms with optimized ventilation. Emerg. Microbes Infect. 9 (1):2597–605. doi: 10.1080/22221751.2020.1850184.
  • Dziedzinska, R., P. Kralik, and O. Šerý. 2021. Occurrence of SARS-CoV-2 in indoor environments with increased circulation and gathering of people. Front. Public Health. 9:787841. doi: 10.3389/fpubh.2021.787841.
  • Edwards, D. A., D. Ausiello, J. Salzman, T. Devlin, R. Langer, B. J. Beddingfield, A. C. Fears, L. A. Doyle-Meyers, R. K. Redmann, S. Z. Killeen, et al. 2021. Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proc. Natl. Acad. Sci. USA. 118 (8):e2021830118. doi: 10.1073/pnas.2021830118.
  • Etheridge, D. W., and M. Sandberg. 1996. Building ventilation: Theory and measurement. Chichester, UK: John Wiley & Sons.
  • Faridi, S., S. Niazi, K. Sadeghi, K. Naddafi, J. Yavarian, M. Shamsipour, N. Z. S. Jandaghi, K. Sadeghniiat, R. Nabizadeh, M. Yunesian, et al. 2020. A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran. Sci. Total Environ. 725:138401. doi: 10.1016/j.scitotenv.2020.138401.
  • Fears, A. C., W. B. Klimstra, P. Duprex, A. Hartman, S. C. Weaver, K. S. Plante, D. Mirchandani, J. A. Plante, P. V. Aguilar, D. Fernández, et al. 2020. Persistence of severe acute respiratory syndrome coronavirus 2 in aerosol suspensions. Emerg. Infect. Dis. 26 (9):2168–71. doi: 10.3201/eid2609.201806.
  • Feng, B., K. Xu, S. Gu, S. Zheng, Q. Zou, Y. Xu, L. Yu, F. Lou, F. Yu, T. Jin, et al. 2021. Multi-route transmission potential of SARS-CoV-2 in healthcare facilities. J. Hazard. Mater. 402:123771. doi: 10.1016/j.jhazmat.2020.123771.
  • Fortin, A., M. Veillette, A. Larrotta, Y. Longtin, C. Duchaine, and N. Grandvaux. 2023. Detection of viable SARS-CoV-2 in retrospective analysis of aerosol samples collected from hospital rooms of patients with COVID-19. Clin. Microbiol. Infect. 29 (6):805–7. doi: 10.1016/j.cmi.2023.03.019.
  • Gareth, J., W. Daniela, H. Trevor, and T. Robert. 2013. An introduction to statistical learning: With applications in R. New York, NY: Spinger.
  • Ge, X.-Y., Y. Pu, C.-H. Liao, W.-F. Huang, Q. Zeng, H. Zhou, B. Yi, A.-M. Wang, Q.-Y. Dou, P.-C. Zhou, et al. 2020. Evaluation of the exposure risk of SARS-CoV-2 in different hospital environment. Sustain. Cities Soc. 61:102413. doi: 10.1016/j.scs.2020.102413.
  • Gharehchahi, E., F. Dehghani, A. Rafiee, M. Jamalidoust, and M. Hoseini. 2021. Investigating the Presence of SARS-CoV-2 on the Surfaces, Fomites, and in Indoor Air of a Referral COVID-19 Hospital in a Middle Eastern Area. doi: 10.21203/rs.3.rs-422947/v1.
  • Greenhalgh, T., J. L. Jimenez, K. A. Prather, Z. Tufekci, D. Fisman, and R. Schooley. 2021. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet 397 (10285):1603–5. doi: 10.1016/S0140-6736(21)00869-2.
  • Gregson, F. K. A., N. A. Watson, C. M. Orton, A. E. Haddrell, L. P. McCarthy, T. J. R. Finnie, N. Gent, G. C. Donaldson, P. L. Shah, J. D. Calder, et al. 2021. Comparing aerosol concentrations and particle size distributions generated by singing, speaking and breathing. Aerosol Sci. Technol. 55 (6):681–91. doi: 10.1080/02786826.2021.1883544.
  • Grimalt, J. O., H. Vílchez, P. A. Fraile-Ribot, E. Marco, A. Campins, J. Orfila, B. L. Van Drooge, and F. Fanjul. 2022. Spread of SARS-CoV-2 in hospital areas. Environ. Res. 204 (Pt B):112074. doi: 10.1016/j.envres.2021.112074.
  • Guo, Z.-D., Z.-Y. Wang, S.-F. Zhang, X. Li, L. Li, C. Li, Y. Cui, R.-B. Fu, Y.-Z. Dong, X.-Y. Chi, et al. 2020. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg. Infect. Dis. 26 (7):1583–91. doi: 10.3201/eid2607.200885.
  • Habibi, N., S. Uddin, F. Al‐Salameen, S. Al‐Amad, V. Kumar, M. Al‐Otaibi, N. A. Razzack, A. Shajan, and F. Shirshikar. 2021. SARS‐CoV‐2, other respiratory viruses and bacteria in aerosols: Report from Kuwait’s hospitals. Indoor Air. 31 (6):1815–25. doi: 10.1111/ina.12871.
  • Hawks, S. A., A. J. Prussin, S. C. Kuchinsky, J. Pan, L. C. Marr, and N. K. Duggal. 2021. Infectious SARS-CoV-2 is emitted in aerosol particles. MBio 12 (5):21. 02527-02521. doi: 10.1128/mbio.02527-21. doi: 10.1128/mbio.
  • Hemati, S., G. R. Mobini, M. Heidari, F. Rahmani, A. Soleymani Babadi, M. Farhadkhani, H. Nourmoradi, A. Raeisi, A. Ahmadi, A. Khodabakhshi, et al. 2021. Simultaneous monitoring of SARS-CoV-2, bacteria, and fungi in indoor air of hospital: A study on Hajar Hospital in Shahrekord, Iran. Environ. Sci. Pollut. Res. Int. 28 (32):43792–802. doi: 10.1007/s11356-021-13628-9.
  • Ho, C. K. 2021a. Modeling airborne pathogen transport and transmission risks of SARS-CoV-2. Appl. Math. Model. 95:297–319. doi: 10.1016/j.apm.2021.02.018.
  • Ho, C. K. 2021b. Modelling airborne transmission and ventilation impacts of a COVID-19 outbreak in a restaurant in Guangzhou, China. International Journal of Computational Fluid Dynamics 35 (9):708–26. doi: 10.1080/10618562.2021.1910678.
  • Horve, P. F., L. G. Dietz, G. Bowles, G. MacCrone, A. Olsen-Martinez, D. Northcutt, V. Moore, L. Barnatan, H. Parhizkar, and K. G. Van Den Wymelenberg. 2022. Longitudinal analysis of built environment and aerosol contamination associated with isolated COVID-19 positive individuals. Sci. Rep. 12 (1):7395. doi: 10.1038/s41598-022-11303-8.
  • Horve, P. F., L. G. Dietz, M. Fretz, D. A. Constant, A. Wilkes, J. M. Townes, R. G. Martindale, W. B. Messer, and K. G. Van Den Wymelenberg. 2021. Identification of SARS‐CoV‐2 RNA in healthcare heating, ventilation, and air conditioning units. Indoor Air. 31 (6):1826–32. doi: 10.1111/ina.12898.
  • Hu, J., C. Lei, Z. Chen, W. Liu, X. Hu, R. Pei, Z. Su, F. Deng, Y. Huang, X. Sun, et al. 2020. Distribution of airborne SARS-CoV-2 and possible aerosol transmission in Wuhan hospitals, China. Natl. Sci. Rev. 7 (12):1865–7. doi: 10.1093/nsr/nwaa250.
  • Huang, W., C. X. Gao, D. Luo, Y. Wang, X. Zheng, C. Liu, Y. Wang, Y. Li, and H. Qian. 2023. Risk evaluation of venue types and human behaviors of COVID-19 outbreaks in public indoor environments: A systematic review and meta-analysis. Environ. Pollut. 341:122970. doi: 10.1016/j.envpol.2023.122970.
  • Huang, W., K. Wang, C.-T. Hung, K.-M. Chow, D. Tsang, W.-M. Lai, R. H. Xu, E.-K. Yeoh, K.-F. Ho, and C. Chen. 2022. Evaluation of SARS-CoV-2 transmission in COVID-19 isolation wards: On-site sampling and numerical analysis. J. Hazard. Mater. 436:129152. doi: 10.1016/j.jhazmat.2022.129152.
  • Jiang, Y., H. Wang, L. Chen, J. He, L. Chen, Y. Liu, X. Hu, A. Li, S. Liu, and P. Zhang. 2020. Clinical data on hospital environmental hygiene monitoring and medical staffs protection during the coronavirus disease 2019 outbreak. MedRxiv:2020.2002.2025.20028043 doi: 10.1101/2020.02.25.20028043.
  • Jin, T., J. Li, J. Yang, J. Li, F. Hong, H. Long, Q. Deng, Y. Qin, J. Jiang, X. Zhou, et al. 2021. SARS-CoV-2 presented in the air of an intensive care unit (ICU). Sustain. Cities Soc. 65:102446. doi: 10.1016/j.scs.2020.102446.
  • Kalivelampatti Arumugam, K., N. Zgheib, S. Balachandar, and J. Salinas. 2022. A statistical framework for assessing the effectiveness of filtration and ventilation in preventing indoor airborne viral transmission using high-fidelity simulations. In Bulletin of the American Physical Society. College Park, MD: American Physical Society (APS).
  • Kang, M., J. Wei, J. Yuan, J. Guo, Y. Zhang, J. Hang, Y. Qu, H. Qian, Y. Zhuang, X. Chen, et al. 2020. Probable evidence of fecal aerosol transmission of SARS-CoV-2 in a high-rise building. Ann. Intern. Med. 173 (12):974–80. doi: 10.7326/M20-0928.
  • Kenarkoohi, A., Z. Noorimotlagh, S. Falahi, A. Amarloei, S. A. Mirzaee, I. Pakzad, and E. Bastani. 2020. Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus. Sci. Total Environ. 748:141324. doi: 10.1016/j.scitotenv.2020.141324.
  • Killingley, B., A. J. Mann, M. Kalinova, A. Boyers, N. Goonawardane, J. Zhou, K. Lindsell, S. S. Hare, J. Brown, R. Frise, et al. 2022. Safety, tolerability and viral kinetics during SARS-CoV-2 human challenge in young adults. Nat. Med. 28 (5):1031–41. doi: 10.1038/s41591-022-01780-9.
  • Kim, U. J., S. Y. Lee, J. Y. Lee, A. Lee, S. E. Kim, O. J. Choi, J. S. Lee, S. J. Kee, and H. C. Jang. 2020. Air and environmental contamination caused by COVID-19 patients: A multi-center study. J. Korean Med. Sci. 35 (35):e332. PMC: 32959546 doi: 10.3346/jkms.2020.35.e332.
  • King, K. L., S. Wilson, J. M. Napolitano, K. J. Sell, L. Rennert, C. L. Parkinson, and D. Dean. 2022. SARS-CoV-2 variants of concern alpha and delta show increased viral load in saliva. PLoS One. 17 (5):e0267750. doi: 10.1371/journal.pone.0267750.
  • Kitagawa, H., T. Nomura, Y. Kaiki, M. Kakimoto, T. Nazmul, K. Omori, N. Shigemoto, T. Sakaguchi, and H. Ohge. 2023. Viable SARS-CoV-2 detected in the air of hospital rooms of patients with COVID-19 with an early infection. Int. J. Infect. Dis. 126:73–8. doi: 10.1016/j.ijid.2022.11.003.
  • Kohanski, M. A., L. J. Lo, and M. S. Waring. 2020. Review of indoor aerosol generation, transport, and control in the context of COVID‐19, in. Int. Forum Allergy Rhinol. 10 (10):1173–9. Wiley Online Library. doi: 10.1002/alr.22661.
  • Kotwa, J. D., A. J. Jamal, H. Mbareche, L. Yip, P. Aftanas, S. Barati, N. G. Bell, E. Bryce, E. Coomes, G. Crowl, et al. 2022. Surface and air contamination with severe acute respiratory syndrome coronavirus 2 from hospitalized coronavirus disease 2019 patients in Toronto, Canada, March–May 2020. J. Infect. Dis. 225 (5):768–76. doi: 10.1093/infdis/jiab578.
  • Krambrich, J., D. Akaberi, J. Ling, T. Hoffman, L. Svensson, M. Hagbom, and Å. Lundkvist. 2021. SARS-CoV-2 in hospital indoor environments is predominantly non-infectious. Virol. J. 18 (1):109. doi: 10.1186/s12985-021-01556-6.
  • Kutter, J. S., D. de Meulder, T. M. Bestebroer, P. Lexmond, A. Mulders, M. Richard, R. A. M. Fouchier, and S. Herfst. 2021. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat. Commun. 12 (1):1653. doi: 10.1038/s41467-021-21918-6.
  • Lane, M. A., E. A. Brownsword, A. Babiker, J. M. Ingersoll, J. Waggoner, M. Ayers, M. Klopman, T. M. Uyeki, W. G. Lindsley, and C. S. Kraft. 2021. Bioaerosol Sampling for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a referral center with critically ill coronavirus disease 2019 (COVID-19) patients March–May 2020. Clin. Infect. Dis. 73 (7):e1790–4–e1794. doi: 10.1093/cid/ciaa1880.
  • Lane, M. A., E. A. Brownsword, J. S. Morgan, A. Babiker, S. A. Vanairsdale, G. M. Lyon, A. K. Mehta, J. M. Ingersoll, W. G. Lindsley, and C. S. Kraft. 2020. Bioaerosol sampling of a ventilated patient with COVID-19. Am. J. Infect. Control. 48 (12):1540–2. doi: 10.1016/j.ajic.2020.07.033.
  • Laumbach, R. J., G. Mainelis, K. G. Black, N. T. Myers, P. Ohman-Strickland, S. Alimokhtari, S. Hastings, A. Legard, A. de Resende, L. Calderón, et al. 2022. Presence of SARS-CoV-2 aerosol in residences of adults with COVID-19. Ann. Am. Thorac. Soc. 19 (2):338–41. doi: 10.1513/AnnalsATS.202107-847RL.
  • Lednicky, J., M. Pan, J. Loeb, H. Hsieh, A. Eiguren-Fernandez, S. Hering, Z. H. Fan, and C.-Y. Wu. 2016. Highly efficient collection of infectious pandemic influenza H1N1 virus (2009) through laminar-flow water based condensation. Aerosol Sci. Technol. 50 (7):i–iv. doi: 10.1080/02786826.2016.1179254.
  • Lednicky, J. A., M. Lauzardo, M. M. Alam, M. A. Elbadry, C. J. Stephenson, J. C. Gibson, and J. G. Morris. Jr. 2021. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int. J. Infect. Dis. 108:212–6. doi: 10.1016/j.ijid.2021.04.063.
  • Lednicky, J. A., M. Lauzard, Z. H. Fan, A. Jutla, T. B. Tilly, M. Gangwar, M. Usmani, S. N. Shankar, K. Mohamed, A. Eiguren-Fernandez, et al. 2020a. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int. J. Infect. Dis. 100:476–82. doi: 10.1016/j.ijid.2020.09.025.
  • Lednicky, J. A., S. N. Shankar, M. A. Elbadry, J. C. Gibson, M. M. Alam, C. J. Stephenson, A. Eiguren-Fernandez, J. G. Morris, C. N. Mavian, M. Salemi, et al. 2020b. Collection of SARS-CoV-2 virus from the air of a clinic within a university student health care center and analyses of the viral genomic sequence. Aerosol Air Qual. Res. 20 (6):1167–71. doi: 10.4209/aaqr.2020.02.0202.
  • Lei, H., F. Ye, X. Liu, Z. Huang, S. Ling, Z. Jiang, J. Cheng, X. Huang, Q. Wu, S. Wu, et al. 2020. SARS‐CoV‐2 environmental contamination associated with persistently infected COVID‐19 patients. Influenza Other Respir. Viruses. 14 (6):688–99. doi: 10.1111/irv.12783.
  • Li, H., S. N. Shankar, C. T. Witanachchi, J. A. Lednicky, J. C. Loeb, M. M. Alam, Z. H. Fan, K. Mohamed, A. Eiguren-Fernandez, and C.-Y. Wu. 2021. Environmental surveillance and transmission risk assessments for SARS-CoV-2 in a fitness center. Aerosol Air Qual. Res. 21 (11):210106. doi: 10.4209/aaqr.210106.
  • Li, J., Y. Zhang, L. Jiang, H. Cheng, J. Li, L. Li, Z. Chen, F. Tang, Y. Fu, Y. Jin, et al. 2022. Similar aerosol emission rates and viral loads in upper respiratory tracts for COVID-19 patients with delta and omicron variant infection. Virol. Sin. 37 (5):762–4. doi: 10.1016/j.virs.2022.07.010.
  • Li, Y. H., Y. Z. Fan, L. Jiang, and H. B. Wang. 2020. Aerosol and environmental surface monitoring for SARS-CoV-2 RNA in a designated hospital for severe COVID-19 patients. Epidemiol. Infect. 148:e154. doi: 10.1017/S0950268820001570.
  • Li, Y., G. M. Leung, J. W. Tang, X. Yang, C. Y. H. Chao, J. Z. Lin, J. W. Lu, P. V. Nielsen, J. Niu, H. Qian, et al. 2007. Role of ventilation in airborne transmission of infectious agents in the built environment-a multidisciplinary systematic review. Indoor Air. 17 (1):2–18. doi: 10.1111/j.1600-0668.2006.00445.x.
  • Linde, K. J., I. M. Wouters, J. A. J. W. Kluytmans, M. F. Q. Kluytmans-van den Bergh, S. D. Pas, C. H. GeurtsvanKessel, M. P. G. Koopmans, M. Meier, P. Meijer, C. R. Raben, et al. 2023. Detection of SARS-CoV-2 in air and on surfaces in rooms of infected nursing home residents. Ann. Work Expo. Health. 67 (1):129–40. doi: 10.1093/annweh/wxac056.
  • Liu, W., D. Li, C. Yang, F. Chen, R. Jia, L. Jia, X. Xia, S. Fan, Q. Tan, Y. Ke, et al. 2021. Environmental contamination with SARS‐CoV‐2 in COVID‐19 hospitals in Wuhan, China, 2020. Environ. Microbiol. 23 (12):7373–81. doi: 10.1111/1462-2920.15695.
  • Liu, Y., Z. Ning, Y. Chen, M. Guo, Y. Liu, N. K. Gali, L. Sun, Y. Duan, J. Cai, D. Westerdahl, et al. 2020. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 582 (7813):557–60. doi: 10.1038/s41586-020-2271-3.
  • López, J. H., Á. S. Romo, D. C. Molina, G. Á. Hernández, Á. B. G. Cureño, M. A. Acosta, C. A. A. Gaxiola, M. J. S. Félix, and T. G. Galván. 2021. Detection of Sars-Cov-2 in the air of two hospitals in Hermosillo, Sonora, México, utilizing a low-cost environmental monitoring system. Int. J. Infect. Dis. 102:478–82. doi: 10.1016/j.ijid.2020.10.089.
  • Luo, L., D. Liu, H. Zhang, Z. Li, R. Zhen, X. Zhang, H. Xie, W. Song, J. Liu, Q. Huang, et al. 2020. Air and surface contamination in non-health care settings among 641 environmental specimens of 39 COVID-19 cases. PLoS Negl. Trop. Dis. 14 (10):e0008570. doi: 10.1371/journal.pntd.0008570.
  • Ma, J., X. Qi, H. Chen, X. Li, Z. Zhang, H. Wang, L. Sun, L. Zhang, J. Guo, L. Morawska, et al. 2021. Coronavirus disease 2019 patients in earlier stages exhaled millions of severe acute respiratory syndrome coronavirus 2 per hour. Clin. Infect. Dis. 72 (10):e652–4–e654. doi: 10.1093/cid/ciaa1283.32857833.
  • Mahdi, S. M. S., S. A. Nadji, H. Mohammadi, S. F. Dehghan, M. H. Vaziri, H. Jamaati, M. Jabbari, M. Varahram, and S. Zareei. 2020. Assessment of SARS-CoV-2 in air and surfaces of ICU ward in one of the designated hospitals in Tehran.(Special Issue: COVID-19.). Iran Occupational Health.
  • Malik, M., A.-C. Kunze, T. Bahmer, S. Herget-Rosenthal, and T. Kunze. 2021. SARS-CoV-2: Viral loads of exhaled breath and oronasopharyngeal specimens in hospitalized patients with COVID-19. Int. J. Infect. Dis. 110:105–10. doi: 10.1016/j.ijid.2021.07.012.
  • Mallach, G., S. B. Kasloff, T. Kovesi, A. Kumar, R. Kulka, J. Krishnan, B. Robert, M. McGuinty, S. den Otter-Moore, B. Yazji, et al. 2021. Aerosol SARS-CoV-2 in hospitals and long-term care homes during the COVID-19 pandemic. PLoS One. 16 (9):e0258151. doi: 10.1371/journal.pone.0258151.
  • Marcus, P. I., J. M. Ngunjiri, and M. J. Sekellick. 2009. Dynamics of biologically active subpopulations of influenza virus: Plaque-forming, noninfectious cell-killing, and defective interfering particles. J. Virol. 83 (16):8122–30. doi: 10.1128/jvi.02680-08.
  • Mariam, A. M., M., Joshi, P. S., Rajagopal, A., Khan, M. M, Rao, B. K, Sapra. 2021. Cfd simulation of the airborne transmission of COVID-19 vectors emitted during respiratory mechanisms: Revisiting the concept of safe distance. ACS Omega, 266:16876–16889. doi: 10.1021/acsomega.1c01489.
  • Marr, L. C., J. W. Tang, J. Van Mullekom, and S. S. Lakdawala. 2019. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. J. R Soc. Interface 16 (150):20180298. doi: 10.1098/rsif.2018.0298.
  • Masoumbeigi, H., G. Ghanizadeh, R. Yousefi Arfaei, S. Heydari, H. Goodarzi, R. Dorostkar Sari, and M. Tat. 2020. Investigation of hospital indoor air quality for the presence of SARS-Cov-2. J. Environ. Health Sci. Eng. 18 (2):1259–63. doi: 10.1007/s40201-020-00543-3.
  • Mathur, N. 2022. Study suggests colleagues and household members increase SARS-CoV-2 infection risk in hospital employees, not COVID-19 patients. Accessed November 19, 2023. https://www.news-medical.net/news/20221010/Study-suggests-colleagues-and-household-members-increase-SARS-CoV-2-infection-risk-in-hospital-employees-not-COVID-19-patients.aspx.
  • Mautner, L., M. Hoyos, A. Dangel, C. Berger, A. Ehrhardt, and A. Baiker. 2022. Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virol. J. 19 (1):76. doi: 10.1186/s12985-022-01802-5.
  • McKight, P. E., and J. Najab. 2010. Kruskal‐Wallis test. The Corsini encyclopedia of psychology, 1. Hoboken, NJ: Wiley. doi: 10.1002/9780470479216.corpsy0491.
  • McNeill, V. F. 2022. Airborne transmission of SARS-CoV-2: Evidence and implications for engineering controls. Annu. Rev. Chem. Biomol. Eng. 13 (1):123–40. doi: 10.1146/annurev-chembioeng-092220-111631.
  • McNeill, V. F., R. Corsi, J. A. Huffman, C. King, R. Klein, M. Lamore, D. Y. Maeng, S. L. Miller, N. Lee Ng, P. Olsiewski, et al. 2022. Room-level ventilation in schools and universities. Atmos. Environ. X. 13:100152. doi: 10.1016/j.aeaoa.2022.100152.
  • Menard, S. 2002. Applied logistic regression analysis. Thousand Oaks: SAGE.
  • Miller, S. L., W. W. Nazaroff, J. L. Jimenez, A. Boerstra, G. Buonanno, S. J. Dancer, J. Kurnitski, L. C. Marr, L. Morawska, and C. Noakes. 2021. Transmission of SARS‐CoV‐2 by inhalation of respiratory aerosol in the skagit valley chorale superspreading event. Indoor Air. 31 (2):314–23. doi: 10.1111/ina.12751.
  • Mizukoshi, A., C. Nakama, J. Okumura, and K. Azuma. 2021. Assessing the risk of COVID-19 from multiple pathways of exposure to SARS-CoV-2: Modeling in health-care settings and effectiveness of nonpharmaceutical interventions. Environ. Int. 147:106338. doi: 10.1016/j.envint.2020.106338.
  • Moharir, S. C., S. C. Thota, A. Goel, B. Thakur, D. Tandel, S. M. Reddy, A. Vodapalli, G. Singh Bhalla, D. Kumar, D. Singh Naruka, et al. 2022. Detection of SARS-CoV-2 in the air in Indian hospitals and houses of COVID-19 patients. J. Aerosol Sci. 164:106002. doi: 10.1016/j.jaerosci.2022.106002.
  • Moher, D., A. Liberati, J. Tetzlaff, D. G. Altman, and P. Group. 2010. Preferred reporting items for systematic reviews and meta-analyses: The prisma statement. Int J Surg 8 (5):336–41. doi: 10.1016/j.ijsu.2010.02.007.
  • Moore, G., H. Rickard, D. Stevenson, P. Aranega-Bou, J. Pitman, A. Crook, K. Davies, A. Spencer, C. Burton, L. Easterbrook, et al. 2021. Detection of SARS-CoV-2 within the healthcare environment: A multi-centre study conducted during the first wave of the COVID-19 outbreak in england. J. Hosp. Infect. 108:189–96. doi: 10.1016/j.jhin.2020.11.024.
  • Morioka, S., K. Nakamura, S. Iida, S. Kutsuna, N. Kinoshita, T. Suzuki, T. Suzuki, K. Yamamoto, K. Hayakawa, S. Saito, et al. 2020. Possibility of transmission of severe acute respiratory syndrome coronavirus 2 in a tertiary care hospital setting: A case study. Infect. Prev. Pract. 2 (3):100079. doi: 10.1016/j.infpip.2020.100079.
  • Mouchtouri, V. A., M. Koureas, M. Kyritsi, A. Vontas, L. Kourentis, S. Sapounas, G. Rigakos, E. Petinaki, S. Tsiodras, and C. Hadjichristodoulou. 2020. Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int. J. Hyg. Environ. Health. 230:113599. doi: 10.1016/j.ijheh.2020.113599.
  • Munoz-Price, L. S., F. Rivera, and N. Ledeboer. 2022. Air contamination of households versus hospital inpatient rooms occupied by severe acute respiratory coronavirus virus 2 (SARS-CoV-2)–positive patients. Infect. Control Hosp. Epidemiol. 43 (2):248–52. doi: 10.1017/ice.2021.45.
  • Myers, N. T., R. J. Laumbach, K. G. Black, P. Ohman-Strickland, S. Alimokhtari, A. Legard, A. De Resende, L. Calderón, F. T. Lu, G. Mainelis, et al. 2022. Portable air cleaners and residential exposure to SARS‐CoV‐2 aerosols: A real‐world study. Indoor Air. 32 (4):e13029. doi: 10.1111/ina.13029.
  • Nakamura, K., S. Morioka, S. Kutsuna, S. Iida, T. Suzuki, N. Kinoshita, T. Suzuki, Y. Sugiki, A. Okuhama, K. Kanda, et al. 2020. Environmental surface and air contamination in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patient rooms by disease severity. Infect. Prev. Pract. 2 (4):100098. doi: 10.1016/j.infpip.2020.100098.
  • Nannu Shankar, S., C. T. Witanachchi, A. F. Morea, J. A. Lednicky, J. C. Loeb, M. M. Alam, Z. H. Fan, A. Eiguren-Fernandez, and C.-Y. Wu. 2022. SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19. J. Aerosol Sci. 159:105870. doi: 10.1016/j.jaerosci.2021.105870.
  • Nature. 2023. Indoor air pollution kills and science needs to step up. Nature 2023:338. doi: D41586-023-00338-0.
  • Nazaroff, W. W. 2021. Residential air-change rates: A critical review. Indoor Air. 31 (2):282–313. doi: 10.1111/ina.12785.
  • Nissen, K., J. Krambrich, D. Akaberi, T. Hoffman, J. Ling, Å. Lundkvist, L. Svensson, and E. Salaneck. 2020. Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards. Sci. Rep. 10 (1):19589. doi: 10.1038/s41598-020-76442-2.
  • Ong, S. W. X., Y. K. Tan, K. K. Coleman, B. H. Tan, Y.-S. Leo, D. L. Wang, C. G. Ng, O.-T. Ng, M. S. Y. Wong, and K. Marimuthu. 2021. Lack of viable severe acute respiratory coronavirus virus 2 (SARS-CoV-2) among PCR-positive air samples from hospital rooms and community isolation facilities. Infect. Control Hosp. Epidemiol. 42 (11):1327–32. doi: 10.1017/ice.2021.8.
  • Ong, S. W. X., Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong, and K. Marimuthu. 2020. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 323 (16):1610–2. doi: 10.1001/jama.2020.3227.32129805.
  • Pan, M., J. A. Lednicky, and C. Y. Wu. 2019. Collection, particle sizing and detection of airborne viruses. J. Appl. Microbiol. 127 (6):1596–611. doi: 10.1111/jam.14278.
  • Passos, R. G., M. B. Silveira, and J. S. Abrahão. 2021. Exploratory assessment of the occurrence of SARS-CoV-2 in aerosols in hospital facilities and public spaces of a metropolitan center in Brazil. Environ. Res. 195:110808. doi: 10.1016/j.envres.2021.110808.
  • Parhizkar, H., L. Dietz, A. Olsen-Martinez, P. F. Horve, L. Barnatan, D. Northcutt, and K. G. Van Den Wymelenberg. 2022. Quantifying environmental mitigation of aerosol viral load in a controlled chamber with participants diagnosed with coronavirus disease 2019. Clin. Infect. Dis. 75 (1):e174–e184. doi: 10.1093/cid/ciac006.
  • Pochtovyi, A. A., V. V. Bacalin, N. A. Kuznetsova, M. A. Nikiforova, E. V. Shidlovskaya, B. I. Verdiev, E. N. Milashenko, A. M. Shchetinin, O. A. Burgasova, L. V. Kolobukhina, et al. 2021. SARS-CoV-2 aerosol and surface contamination in health care settings: The Moscow pilot study. Aerosol Air Qual. Res. 21 (4):200604. doi: 10.4209/aaqr.200604.
  • Prentiss, M., A. Chu, and K. K. Berggren. 2020. Superspreading events without superspreaders: Using high attack rate events to estimate n° for airborne transmission of COVID-19. MedRxiv. 2020.2010. 2021.20216895. doi.
  • Qian, H., T. Miao, L. Liu, X. Zheng, D. Luo, and Y. Li. 2021. Indoor transmission of SARS‐CoV‐2. Indoor Air. 31 (3):639–45. doi. doi: 10.1111/ina.12766.
  • Rahmani, A. R., M. Leili, G. Azarian, and A. Poormohammadi. 2020. Sampling and detection of corona viruses in air: A mini review. Sci. Total Environ. 740:140207. doi: 10.1016/j.scitotenv.2020.140207.
  • Ramuta, M. D., C. M. Newman, S. F. Brakefield, M. R. Stauss, R. W. Wiseman, A. Kita-Yarbro, E. J. O'Connor, N. Dahal, A. Lim, K. P. Poulsen, et al. 2022. SARS-CoV-2 and other respiratory pathogens are detected in continuous air samples from congregate settings. Nat. Commun. 13 (1):4717. doi: 10.1038/s41467-022-32406-w.
  • Ratnesar-Shumate, S., K. Bohannon, G. Williams, B. Holland, M. Krause, B. Green, D. Freeburger, and P. Dabisch. 2021. Comparison of the performance of aerosol sampling devices for measuring infectious SARS-CoV-2 aerosols. Aerosol Sci. Technol. 55 (8):975–86. doi: 10.1080/02786826.2021.1910137.
  • Razzini, K., M. Castrica, L. Menchetti, L. Maggi, L. Negroni, N. V. Orfeo, A. Pizzoccheri, M. Stocco, S. Muttini, and C. M. Balzaretti. 2020. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci. Total Environ. 742:140540. doi: 10.1016/j.scitotenv.2020.140540.
  • R Core Team. 2018. R: A language and environment for statistical computing. 2014. In R Foundation for Statistical Computing: Vienna, Austria. https://www.r-project.org/
  • Riediker, M., and D.-H. Tsai. 2020. Estimation of viral aerosol emissions from simulated individuals with asymptomatic to moderate coronavirus disease 2019. JAMA Netw. Open. 3 (7):e2013807. doi: 10.1001/jamanetworkopen.2020.13807.
  • Riemenschneider, L., M. H. Woo, C. Y. Wu, D. Lundgren, J. Wander, J. H. Lee, H. W. Li, and B. Heimbuch. 2010. Characterization of reaerosolization from impingers in an effort to improve airborne virus sampling. J. Appl. Microbiol. 108 (1):315–24. doi: 10.1111/j.1365-2672.2009.04425.x.
  • Rivas, E., J. L. Santiago, F. Martín, and A. Martilli. 2022. Impact of natural ventilation on exposure to SARS-CoV 2 in indoor/semi-indoor terraces using co2 concentrations as a proxy. Journal of Building Engineering 46:103725. doi: 10.1016/j.jobe.2021.103725.
  • Robie, E. R., A. Abdelgadir, R. A. Binder, and G. C. Gray. 2021. Live SARS‐CoV‐2 is difficult to detect in patient aerosols. Influenza Other Respir. Viruses. 15 (4):554–7. doi: 10.1111/irv.12860.
  • Rodríguez, M., M. L. Palop, S. Seseña, and A. Rodríguez. 2021. Are the portable air cleaners (pac) really effective to terminate airborne SARS-CoV-2? Sci. Total Environ. 785:147300. doi: 10.1016/j.scitotenv.2021.147300.
  • Santarpia, J. L., D. N. Rivera, V. L. Herrera, M. J. Morwitzer, H. M. Creager, G. W. Santarpia, K. K. Crown, D. M. Brett-Major, E. R. Schnaubelt, M. J. Broadhurst, et al. 2020. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. Sci. Rep. 10 (1):12732. doi: 10.1038/s41598-020-69286-3.
  • Santarpia, J. L., V. L. Herrera, D. N. Rivera, S. Ratnesar-Shumate, S. P. Reid, D. N. Ackerman, P. W. Denton, J. W. S. Martens, Y. Fang, N. Conoan, et al. 2022. The size and culturability of patient-generated SARS-CoV-2 aerosol. J. Expo. Sci. Environ. Epidemiol. 32 (5):706–11. doi: 10.1038/s41370-021-00376-8.
  • Shen, Y., C. Li, H. Dong, Z. Wang, L. Martinez, Z. Sun, A. Handel, Z. Chen, E. Chen, M. H. Ebell, et al. 2020. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Intern. Med. 180 (12):1665–71. doi: 10.1001/jamainternmed.2020.5225.
  • Silva, P. G. d., J. Gonçalves, A. I. B. Lopes, N. A. Esteves, G. E. E. Bamba, M. S. J. Nascimento, P. T. Branco, R. R. Soares, S. I. Sousa, and J. R. Mesquita. 2022. Evidence of air and surface contamination with SARS-CoV-2 in a major hospital in Portugal. Int. J. Environ. Res. Public Health. 19 (1):525. doi: 10.3390/ijerph19010525.
  • Sohn, Y., S. J. Jeong, W. S. Chung, J. H. Hyun, Y. J. Baek, Y. Cho, J. H. Kim, J. Y. Ahn, J. Y. Choi, and J.-S. Yeom. 2020. Assessing viral shedding and infectivity of asymptomatic or mildly symptomatic patients with COVID-19 in a later phase. J. Clin. Med. 9 (9):2924. doi: 10.3390/jcm9092924.
  • Somsen, G. A., C. van Rijn, S. Kooij, R. A. Bem, and D. Bonn. 2020. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet. Respir. Med. 8 (7):658–9. doi: 10.1016/S2213-2600(20)30245-9.
  • Song, Z.-G., Y.-M. Chen, F. Wu, L. Xu, B.-F. Wang, L. Shi, X. Chen, F.-H. Dai, J.-L. She, J.-M. Chen, et al. 2020. Identifying the Risk of SARS-CoV-2 Infection and Environmental Monitoring in Airborne Infectious Isolation Rooms (AIIRs). Virol. Sin. 35 (6):785–92. doi: 10.1007/s12250-020-00301-7.
  • Stern, R. A., A. Al-Hemoud, B. Alahmad, and P. Koutrakis. 2021a. Levels and particle size distribution of airborne SARS-CoV-2 at a healthcare facility in Kuwait. Sci. Total Environ. 782:146799. doi: 10.1016/j.scitotenv.2021.146799.
  • Stern, R. A., M. E. Charness, K. Gupta, P. Koutrakis, K. Linsenmeyer, R. Madjarov, M. A. G. Martins, B. Lemos, S. E. Dowd, and E. Garshick. 2022. Concordance of SARS-CoV-2 RNA in Aerosols From a Nurses Station and in Nurses and Patients During a Hospital Ward Outbreak. JAMA Netw. Open. 5 (6):e2216176. doi: 10.1001/jamanetworkopen.2022.16176.
  • Stern, R. A., P. Koutrakis, M. A. G. Martins, B. Lemos, S. E. Dowd, E. M. Sunderland, and E. Garshick. 2021b. Characterization of hospital airborne SARS-CoV-2. Respir. Res. 22 (1):73. doi: 10.1186/s12931-021-01637-8.
  • Styczynski, A., C. Hemlock, K. I. Hoque, R. Verma, C. LeBoa, M. O. F. Bhuiyan, A. Nag, M. G. D. Harun, M. B. Amin, and J. R. Andrews. 2022. Assessing impact of ventilation on airborne transmission of SARS-CoV-2: A cross-sectional analysis of naturally ventilated healthcare settings in Bangladesh. BMJ Open. 12 (4):e055206. doi: 10.1136/bmjopen-2021-055206.
  • Tang, J. W., W. P. Bahnfleth, P. M. Bluyssen, G. Buonanno, J. L. Jimenez, J. Kurnitski, Y. Li, S. Miller, C. Sekhar, L. Morawska, et al. 2021. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Hosp. Infect. 110:89–96. doi: 10.1016/j.jhin.2020.12.022.
  • Tang, J. W., P. Wilson, N. Shetty, and C. J. Noakes. 2015. Aerosol-transmitted infections—a new consideration for public health and infection control teams. Curr. Treat. Options Infect. Dis. 7 (3):176–201. doi: 10.1007/s40506-015-0057-1.
  • Tan, L., B. Ma, X. Lai, L. Han, P. Cao, J. Zhang, J. Fu, Q. Zhou, S. Wei, Z. Wang, et al. 2020. Air and surface contamination by SARS-CoV-2 virus in a tertiary hospital in Wuhan, China. Int. J. Infect. Dis. 99:3–7. doi: 10.1016/j.ijid.2020.07.027.
  • Tellier, R. 2022. COVID-19: The case for aerosol transmission. Interface Focus. 12 (2):20210072. doi: 10.1098/rsfs.2021.0072.
  • Tellier, R., Y. Li, B. J. Cowling, and J. W. Tang. 2019. Recognition of aerosol transmission of infectious agents: A commentary. BMC Infect. Dis. 19 (1):101. doi: 10.1186/s12879-019-3707-y.
  • van Doremalen, N., T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, et al. 2020. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl. J. Med. 382 (16):1564–7. doi: 10.1056/NEJMc2004973.
  • van Kampen, J. J. A., D. A. M. C. van de Vijver, P. L. A. Fraaij, B. L. Haagmans, M. M. Lamers, N. Okba, J. P. C. van den Akker, H. Endeman, D. A. M. P. J. Gommers, J. J. Cornelissen, et al. 2021. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat. Commun. 12 (1):267. doi: 10.1038/s41467-020-20568-4.
  • Vass, W. B., J. A. Lednicky, S. N. Shankar, Z. H. Fan, A. Eiguren-Fernandez, and C.-Y. Wu. 2022. Viable SARS-CoV-2 delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. J. Aerosol Sci. 165:106038. doi: 10.1016/j.jaerosci.2022.106038.
  • Vass, W. B., S. N. Shankar, J. A. Lednicky, Y. Yang, C. Manzanas, Y. Zhang, J. Boyette, J. Chen, Y. Chen, A. Shirkhani, et al. 2023. Detection and isolation of infectious SARS-CoV-2 omicron subvariants collected from residential settings. Aerosol Sci. Technol. 57 (11):1142–53. doi: 10.1080/02786826.2023.2251537.
  • Verreault, D., S. Moineau, and C. Duchaine. 2008. Methods for sampling of airborne viruses. Microbiol. Mol. Biol. Rev. 72 (3):413–44. doi: 10.1128/mmbr.00002-08.
  • Vosoughi, M., C. Karami, A. Dargahi, F. Jeddi, K. M. Jalali, A. Hadisi, S. B. Haghighi, H. P. Dogahe, Z. Noorimotlagh, and S. A. Mirzaee. 2021. Investigation of SARS-CoV-2 in hospital indoor air of COVID-19 patients’ ward with impinger method. Environ. Sci. Pollut. Res. Int. 28 (36):50480–8. doi: 10.1007/s11356-021-14260-3.
  • Wang, Q., Y. Li, D. C. Lung, P.-T. Chan, C.-H. Dung, W. Jia, T. Miao, J. Huang, W. Chen, Z. Wang, et al. 2022a. Aerosol transmission of SARS-CoV-2 due to the chimney effect in two high-rise housing drainage stacks. J. Hazard. Mater. 421:126799. doi: 10.1016/j.jhazmat.2021.126799.
  • Wang, Q., Z. Lin, J. Niu, G. K.-Y. Choi, J. C. H. Fung, A. K. H. Lau, P. Louie, K. K. M. Leung, J. Huang, P. Cheng, et al. 2022b. Spread of SARS-CoV-2 aerosols via two connected drainage stacks in a high-rise housing outbreak of COVID-19. J. Hazard. Mater. 430:128475. doi: 10.1016/j.jhazmat.2022.128475.
  • Wei, L., J. Lin, X. Duan, W. Huang, X. Lu, J. Zhou, and Z. Zong. 2020. Asymptomatic COVID-19 patients can contaminate their surroundings: An environment sampling study. Msphere 5 (3):20. doi: 10.1128/msphere.00442-20.
  • Weisstein, E. W. 2004. Bonferroni correction. Accessed November 19, 2023. https://mathworld.wolfram.com/BonferroniCorrection.html.
  • WHO. 2020. Coronavirus disease 2019 (COVID-19) situation report-51. 2023. Accessed November 19, 2023. https://www.who.int/publications/m/item/situation-report-51.
  • WHO. 2023. Statement on the fifteenth meeting of the ihr 2005. emergency committee on the COVID-19 pandemic. Accessed November 19, 2023. https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic.
  • WHO. 2024. WHO Coronavirus (COVID-19) dashboard. Accessed November 19, 2023. https://covid19.who.int/
  • Wilcoxon, F., S. Katti, and R. A. Wilcox. 1970. Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. In Selected tables in mathematical statistics, ed. Institute of Mathematical Statistics, Vol. 1, 171–259.
  • Winslow, R. L., J. Zhou, E. F. Windle, I. Nur, R. Lall, C. Ji, J. E. Millar, P. M. Dark, J. Naisbitt, A. Simonds, et al. 2022. SARS-CoV-2 environmental contamination from hospitalised patients with COVID-19 receiving aerosol-generating procedures. Thorax 77 (3):259–67. doi: 10.1136/thoraxjnl-2021-218035.
  • Wölfel, R., V. M. Corman, W. Guggemos, M. Seilmaier, S. Zange, M. A. Müller, D. Niemeyer, T. C. Jones, P. Vollmar, C. Rothe, et al. 2020. Virological assessment of hospitalized patients with COVID-2019. Nature 581 (7809):465–9. doi: 10.1038/s41586-020-2196-x.
  • Wong, J. C. C., H. C. Hapuarachchi, S. Arivalan, W. P. Tien, C. Koo, D. Mailepessov, M. Kong, M. Nazeem, M. Lim, and L. C. Ng. 2020. Environmental Contamination of SARS-CoV-2 in a Non-Healthcare Setting. Int. J. Environ. Res. Public Health. 18 (1):117. doi: 10.3390/ijerph18010117.
  • Wu, S., Y. Wang, X. Jin, J. Tian, J. Liu, and Y. Mao. 2020. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am. J. Infect. Control. 48 (8):910–4. doi: 10.1016/j.ajic.2020.05.003.
  • Xie, C., H. Zhao, K. Li, Z. Zhang, X. Lu, H. Peng, D. Wang, J. Chen, X. Zhang, D. Wu, et al. 2020. The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health. 20 (1):1202. doi: 10.1186/s12889-020-09296-y.
  • Zahedi, A., F. Seif, M. Golshan, A. Khammar, and M. R. Rezaei Kahkha. 2022. Air Surveillance for viral contamination with SARS-CoV-2 RNA at a healthcare facility. Food Environ. Virol. 14 (4):374–83. doi: 10.1007/s12560-022-09524-1.
  • Zhang, R., Y. Li, A. L. Zhang, Y. Wang, and M. J. Molina. 2020. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA 117 (26):14857–63. doi: 10.1073/pnas.2009637117.
  • Zhou, J., J. A. Otter, J. R. Price, C. Cimpeanu, D. Meno Garcia, J. Kinross, P. R. Boshier, S. Mason, F. Bolt, A. H. Holmes, et al. 2021b. Investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface and air contamination in an acute healthcare setting during the peak of the coronavirus disease 2019 (COVID-19) pandemic in London. Clin. Infect. Dis. 73 (7):e1870–7–e1877. doi: 10.1093/cid/ciaa905.
  • Zhou, L., M. Yao, X. Zhang, B. Hu, X. Li, H. Chen, L. Zhang, Y. Liu, M. Du, B. Sun, et al. 2021a. Breath-, air- and surface-borne SARS-CoV-2 in hospitals. J. Aerosol Sci. 152:105693. doi: 10.1016/j.jaerosci.2020.105693.
  • 吕品. 如何保证医院Icu. 室内空气环境质量? 11/19/2023. https://www.sohu.com/a/452876204_456060
  • 晋明, 沈., and 刘. 燕敏. 2015. Gb 51039-2014《 综合医院建筑设计规范》 编制思路. 暖通空调:41-46. https://www.zhangqiaokeyan.com/academic-journal-cn_heating-ventilating-air-conditioning_thesis/0201210487428.html.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.